簡易檢索 / 詳目顯示

研究生: 蔡秀金
Pitchaya Eiamsuttitam
論文名稱: Design and Control of Reactive Distillation Via HIDiC and/or Intermediate Condensers Configurations for Silane Process
Design and Control of Reactive Distillation Via HIDiC and/or Intermediate Condensers Configurations for Silane Process
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 錢義隆
I-Lung Chien
曾堯宣
Yao-Hsuan Tseng
余柏毅
Bor-Yih Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 120
中文關鍵詞: heat-integrated reactive distillationintermediate condensersreactive distillationsilane process
外文關鍵詞: heat-integrated reactive distillation, intermediate condensers, reactive distillation, silane process
相關次數: 點閱:336下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Reactive distillation (RD) for the production of silane is a process that requires a large amount of expensive refrigerant to condense top product due to its low boiling temperature (-112 oC). This study aims to study the feasibility of utilities reduction of this process by proposing several configurations including Reactive Distillation (RD), Reactive Distillation with Intermediate Condenser (RD-IC), Reactive Distillation with 2 Intermediate Condensers (RD-2IC), Dual Pressure Reactive Distillation (DPRD), Dual Pressure Reactive Distillation with Intermediate Condenser (DPRD-IC), Dual Pressure Reactive Distillation with 2 Intermediate Condensers (DPRD-2IC), Heat-Integrated Reactive Distillation Column (R-HIDiC), and Heat-Integrated Reactive Distillation Column with 2 Intermediate Condensers (R-HIDiC-2IC). The simulated annealing algorithm is applied to obtain the optimal design of RD and DPRD. The configuration of RD-IC and RD-2IC are adopted from RD optimal design and the configurations of DPRD-IC, DPRD-2IC, R-HIDiC and R-HIDiC-2IC are adopted from DPRD optimal design. According to the simulation results, compared to RD configuration, the TAC saving of RD-IC, RD-2IC, DPRD, DPRD-IC, DPRD-2IC, R-HIDiC and R-HIDiC-2IC under 10 years payback period are 45%, 48%, 4%, 47%, 55%, 10% and 56%, respectively. In addition, the dynamic control performances of RD, RD-2IC, DPRD-2IC and R-HIDiC-2IC are studied. Several control schemes of RD are proposed. The results show that the control scheme with dual temperature control can provide satisfactory responses under throughput and composition disturbances. Later on, the dual temperature control strategy is applied to observe the control performance of RD-2IC, DPRD-2IC and R-HIDiC-2IC by ratio the ICs duty with top condenser duty. It was observed that the proposed control strategies can stabilize the process and maintain the products purities against throughput and composition disturbances.

    ABSTRACT ......................................................................................................................... I ACKNOWLEDGEMENTS .............................................................................................. II TABLE OF CONTENTS ................................................................................................. III LIST OF FIGURES ............................................................................................................V LIST OF TABLES ............................................................................................................ IX CHAPTER 1 INTRODUCTION ....................................................................................... 1 1.1 Background ............................................................................................................. 1 1.2 Literature Survey ..................................................................................................... 3 1.3 Motivation ............................................................................................................... 9 1.4 Thesis organization ............................................................................................... 10 CHAPTER 2 THERMODYNAMIC MODEL AND KINETICS ................................ 11 2.1 Thermodynamic properties ................................................................................... 11 2.2 Kinetic model ........................................................................................................ 15 CHAPTER 3 PROCESS OPTIMIZATION FOR BASE CASE CONFIGURATIONS ............................................................................................................................................ 16 3.1 Simulated annealing algorithm ............................................................................. 16 3.2 Optimization of reactive distillation configuration ............................................... 22 3.3 Optimization of dual pressure reactive distillation ............................................... 27 CHAPTER 4 PROCESS CONFIGURATIONS WITH HEAT INTEGRATION AND/OR INTERMEDIATE CONDENSERS ............................................................... 35 4.1 Reactive distillation with an intermediate condenser ............................................ 35 4.2 Reactive distillation with 2 intermediate condensers ............................................ 40 4.3 Dual pressure reactive distillation with an intermediate condenser ...................... 45 4.4 Dual pressure reactive distillation with 2 intermediate condensers ...................... 51 4.5 Heat-integrated reactive distillation column ......................................................... 57 4.6 Heat-integrated reactive distillation column with 2 intermediate condensers ...... 64 4.7 Results and discussion ........................................................................................... 70 CHAPTER 5 PROCESS DYNAMICS AND CONTROL PERFORMANCE ............ 76 iv 5.1 Reactive distillation ............................................................................................... 76 5.2 Reactive distillation with 2 intermediate condensers ............................................ 86 5.3 Dual pressure reactive distillation with 2 intermediate condensers ...................... 90 5.4 Heat-integrated reactive distillation column with 2 intermediate condensers ...... 95 CHAPTER 6 CONCLUSIONS AND FUTURE WORKS ............................................ 99 6.1 Conclusions ........................................................................................................... 99 6.2 Future works ........................................................................................................ 100 REFERENCES ............................................................................................................... 101 APPENDIX ..................................................................................................................... 103

    Alcántara-Avila, J. Rafael, Morihiro Tanaka, César Ramírez Márquez, Fernando I. Gómez-Castro, J. Gabriel Segovia-Hernández, Ken-Ichiro Sotowa, and Toshihide Horikawa. 2016. “Design of a Multitask Reactive Distillation with Intermediate Heat Exchangers for the Production of Silane and Chlorosilane Derivates.” Industrial & Engineering Chemistry Research 55(41):10968–77.
    Cheng, Jian-Kai, Hao-Yeh Lee, Hsiao-Ping Huang, and Cheng-Ching Yu. 2009. “Optimal Steady-State Design of Reactive Distillation Processes Using Simulated Annealing.” Journal of the Taiwan Institute of Chemical Engineers 40(2):188–96.
    Coleman, Larry M., and Tonawanda. 1982. “Process for the Production of Ultrahigh Purity Silane with Recycle from Separation Columns.” (19).
    Enerdata. n.d. “Global Energy Statistical Yearbook 2019.” Retrieved (https://yearbook.enerdata.net/total-energy/world-consumption-statistics.html).
    Fang, Jing, Xiao min Cheng, Zhong Yang Li, Hao Li, and Chun Li Li. 2019. “A Review of Internally Heat Integrated Distillation Column.” Chinese Journal of Chemical Engineering 27(6):1272–81.
    Huang, Xun, Wei Jie Ding, Jian Min Yan, and Wen De Xiao. 2013. “Reactive Distillation Column for Disproportionation of Trichlorosilane to Silane: Reducing Refrigeration Load with Intermediate Condensers.” Industrial and Engineering Chemistry Research 52(18):6211–20.
    Iwakabe, Koichi, Masaru Nakaiwa Ã, Kejin Huang, Keigo Matsuda, and Toshinari Nakanishi. 2006. “An Internally Heat-Integrated Distillation Column (HIDiC) In Japan.” (152):900–911.
    Lee, Hao-Yeh, Yi-Chen Lee, I. Lung Chien, and Hsiao-Ping Huang. 2010. “Design and Control of a Heat-Integrated Reactive Distillation System for the Hydrolysis of Methyl Acetate.” Industrial and Engineering Chemistry Research 49(16):7398–7411.
    Leon-Pulido, Jeffrey, Monica P. Sarmiento, Diego M. Garzon, Mario A. Hernández, Angel Darío Gonzalez, Yeimmy Yolima Peralta-Ruiz, and Melvin Duran. 2017. “Energy Study of Reactive-HIDiC Simulation for Ethyl Acetate Synthesis from Acetic Acid.” Chemical Engineering Transactions 58:547–52.
    Mah, R. S. H., J. J. Nicholas, and R. B. Wodnik. 1977. “Distillation with Secondary Reflux and Vaporization: A Comparative Evaluation.” AIChE Journal 23(5):651–58.
    Medina-Herrera, Nancy, Salvador Tututi-Ávila, Juan G. Segovia-Hernández, and Arturo Jiménez-Gutiérrez. 2016. Multi-Product Reactive Distillation for Silanes Production. Vol. 38. Elsevier Masson SAS.
    Pulido, Jeffrey L., Edgar L. Martínez, Maria Regina Wolf Maciel, and Rubens Maciel Filho. 2011. “Heat Integrated Reactive Distillation Column (r-HIDiC): Implementing a New Technology Distillation.” Chemical Engineering Transactions 24:1303–8.
    Ramírez-Márquez, César, Eduardo Sánchez-Ramírez, Juan José Quiroz-Ramírez, Fernando I. Gómez-Castro, Nelly Ramírez-Corona, Jorge A. Cervantes-Jauregui, and Juan Gabriel Segovia-Hernández. 2016. “Dynamic Behavior of a Multi-Tasking Reactive Distillation Column for Production of Silane, Dichlorosilane and Monochlorosilane.”
    102
    Chemical Engineering and Processing: Process Intensification 108:125–38.
    Sundmacher, Kai, Achim Kienle, and Andreas Seidel‐Morgenstern, eds. 2005. Integrated Chemical Processes. Wiley.
    Wang, T. 2020. “Solar Cell Production: Worldwide 2005-2019.” Retrieved (https://www.statista.com/statistics/278917/global-solar-cell-production/).

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 2025/08/18 (校外網路)
    全文公開日期 2025/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE