簡易檢索 / 詳目顯示

研究生: 楊育瑋
Yu-Wei Yang
論文名稱: 多輸入多輸出線性系統之滑動追蹤控制器設計
Sliding Tracking Controller Design of Multi-Input Multi-Output Linear Systems
指導教授: 黃安橋
An-Chyau Huang
口試委員: 陳亮光
Liang-Kuang Chen
姜嘉瑞
Chia-Jui Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 42
中文關鍵詞: 匹配式干擾多輸入多輸出線性系統滑動控制器追跡控制強健控制
外文關鍵詞: Matched disturbance, MIMO LTI system, Sliding Controller, Tracking Control, Robust Control
相關次數: 點閱:231下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    對於完全可控的多輸入多輸出線性非時變系統,可以使用狀態迴授,將極點放置在任意位置,讓系統狀態以期望的性能,回到原點。當進行追蹤控制時,則必需在狀態迴授控制器裡,外加一個參考訊號項。該項的權重矩陣,則必需適當設計,使輸出入訊號向量之間,有單位直流增益。這些設計,在系統皆為已知時,已頗有技巧性了,一旦系統含有匹配式的外擾時,就變得非常具有挑戰性。即使外加了強健項在控制器中,也因多輸入多輸出的特性,使推導難度大為增加。本文以滑動控制方式,提出多輸入多輸出線性非時變系統的強健追蹤控制器,企圖讓系統能容忍匹配式的外擾。其中使用Lyapunov穩定性理論,以證明閉迴路系統有漸近收斂的追蹤性能。另外,亦以電腦模擬來驗證其可行性。


    Abstract

    For regulation control of a completely controllable MIMO LTI system, the state feedback controller is able to place the closed-loop poles to desired locations so that the system states will converge to zero with satisfactory performance. For tracking control, in addition to the state feedback controller, a reference signal term has to be included whose weighting matrix is with a unity DC gain. Even for known systems, state feedback tracking controller design is not straightforward. When the system contains matched uncertainties, the state feedback tracking controller design problem for a MIMO LTI system becomes more involved. In this thesis, a sliding controller is proposed for the state feedback tracking control of MIMO LTI systems subject to matched uncertainties with known variation bounds. The Lyapunov stability theory is employed to prove closed-loop stability so that tracking performance can be ensured. Simulation studies are given to verify effectiveness of the proposed scheme.

    目錄 摘要 I Abstract II 目錄 III 圖目錄 IV 第一章 緒論 1 第二章 MIMO LTI系統控制器設計 4 2.1 目標為零之調節控制 (回顧) 4 2.2 目標為非零常數之調節控制 (回顧) 6 2.3 追跡控制 (回顧) 9 第三章 MIMO系統之滑動控制器設計 11 3.1目標為零的滑動調節控制 (回顧) 11 3.2追跡控制 13 3.3 MIMO系統-滑動模型追跡控制 16 第四章 模擬結果 18 4.1滑動調節控制模擬 18 4.2滑動追跡控制模擬 23 4.2.1目標為非零之調節控制 23 4.2.2 目標為時變函數之追跡控制 27 4.3滑動參考追跡控制模擬 31 第五章 結語與未來展望 35 參考文獻 36

    參考文獻

    [1] N. S. Nise, Control System Engineering, 4th ed., John-Wiley Sons, 2004.

    [2] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, 8th ed., Wiley, 2002.

    [3] D. E. Kirk, Optimal Control Theory-An Introduction, Dover Publications, 1982.

    [4] S. Skogestad and I. Postlethwaite, Multivariable Feedback Control: Analysis and Design, 2nd ed., Wiley, 2005.

    [5] K. S. Narendra and A. M. Annaswamy, 1989. “Stable Adaptive Systems,” Prentice Hall, 1989.

    [6] D. Y. Xue, Y. Q. Chen, and D. P. Atherton, Linear Feedback Control: Analysis and Design with MATLAB, Society for Industrial and Applied Mathematics Philadelphia, 2009.

    [7] G. Leitmann, “Guaranteed asymptotic stability for some linear systems with bounded uncertainties” Journal of Dynamic Systems, Measurement, and Control, vol. 101, pp. 212-216, 1979.

    [8] S. Gutman, “Uncertain Dynamical Systems-A Lyapunov Min-Max Approach” IEEE Transaction on Automatic Control, vol. AC-24, pp. 437-443, 1979

    [9] M. Corless and G. Leitmann, “Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems,” IEEE Transactions on Automatic Control, vol. 26, pp.1139-1144, 1981.

    [10] B. R. Barmish and G. Leitmann, “On ultimate boundedness control of uncertain systems in the absence of matching assumptions,” IEEE Transactions on Automatic Control, vol. 27, pp. 153-158, 1982.

    [11] Y. H. Chen and G. Leitmann “Robustness of uncertain systems in the absence of matching assumptions,” International Journal of Control, vol. 45, pp.1527-1542, 1987.

    [12] B. R. Barmish, M. Corless, and G. Leitmann, “A new class of stabilizing controllers for uncertain dynamical systems,” SIAM Journal on Control and Optimization, vol. 21, pp. 246-255, 1983.

    [13] Z. Qu and D. M. Dawson, “Continuous feedback control guaranteeing exponential stability for uncertain dynamical systems,” The 30th IEEE Conference on Decision and Control, pp. 2636-2638, 1991.

    [14] H. Wu, H. and K. Mizukami, “Exponentail stability of a class of nonlinear dynamical systems with uncertainties,” System and Control Letters, vol. 21, pp. 307-313, 1993.

    [15] B. Xian, D. M. Dawson, M. S. de Queiroz, and J. C. Chen, “A continuous asymptotic tracking control strategy for uncertain nonlinear systems,” IEEE Transactions on Automatic Control, vol. 49, pp. 1206-1211, 2004.

    [16] J. Chen, A. Behal, and D. M. Dawson, “Robust feedback control for a class of uncertain MIMO nonlinear systems.” IEEE Transactions on Automatic Control, vol. 49, pp. 591-596, 2008.

    [17] J. J. E. Slotine and W. Li, Applied Nonlinear Control, Englewood Cliffs, New Jersey: Prentice-Hall, 1991.

    [18] H. K. Khalil, Nonlinear Systems, 3rd ed., New Jersey: Prentice Hall, 2002.

    [19] G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, 2003.

    [20] J. J. E. Slotlne, “Sliding controller design for nonlinear systems,” International Journal of Control, vol. 40, no. 421, 1984.

    [21] J. J. E. Slotine and S. S. Sastry, “Tracing control of nonlinear systems using sliding surfaces with application to robot manipulators,” International Journal of Control, vol. 38, pp. 465, 1983.

    [22] V. Utkin, “Variable structure systems with sliding modes,” IEEE Transactions on Automatic Control, vol. 22, pp. 212-222, 1977.

    [23] Z. Qu, “Asymptotic Stability of Controlling Uncertain Dynamical Systems,” International Journal of Control, vol. 59, pp.1345-1355, 1994.

    QR CODE