簡易檢索 / 詳目顯示

研究生: 陳聖斌
Sheng-bin Chen
論文名稱: 複合式薄膜電極在倒置式串座有機發光二極體研究與應用
The Study and Application of Composite Film Electrode with Tandemed Inverted Organic Light-Emitting Diodes
指導教授: 李志堅
Chih-chien Lee
口試委員: 范慶麟
Ching-lin Fan
徐世祥
Shih-hsiang Hsu
劉舜維
Shun-wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 81
中文關鍵詞: 有機發光二極體串座倒置連接層
外文關鍵詞: OLED, tandem, invert, interconnecting layer
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文是以串座的概念,製作倒置型串座式(tandem)有機發光二極體(Organic light emitting diode;OLED)元件,將上、下兩個相同的高效率綠光元件,以複合式連接層連接起來,與傳統的有機電激發光二極體元件比較,在相同的電流密度下,串座式元件擁有較高的發光效率。本實驗室原未發展過串座式元件,此串座元件的開發則針對串座平台的建立,以及高效率串座元件兩大重點進行研究探討,本論文實驗主軸主要分為:首先,以磷光材料Ir(ppy)3做為磷光電激發光材料,經由材料挑選與最佳化,製作出高效率綠光有機發光二極體。然後,藉由文獻探討做為參考,選用多種不同結構做為串座式元件的連接層,進行連接層研究與串座式結構建立,製作出高效率串座式綠光元件。最後,針對Metal Oxide/Metal/Metal Oxide的結構進行,穿透及電容分析,確立此結構能有效運用於串座元件。
(Ⅰ)經由材料挑選、能階匹配、發光層之摻雜濃度、厚度最佳化後的元件,其發光效率在1000 cd/m2的亮度下,驅動電壓為4.1 V,電流效率67.3 cd/A;在10000 cd/m2的亮度下,驅動電壓為5.3 V,電流效率可達到58.3 cd/A。以上特性表現在小分子磷光綠光系統裡都是非常出色的。
(Ⅱ)藉參考文獻選用多種不同連接層結構先進行串座綠色發光元件,先根據光電分析來確立連接層是否能有效運作。再進行厚度最佳化,成功的建立了新式的連接層結構,其串座效果,可達到理論電流效率疊加之效果。
(Ⅲ)在有良好基本元件以及確定連接層結構後,並成功地將標準元件與連接層做結合,串座出高效率之綠光元件。針對新式連接層結構進行穿透及載子產生分析,確立能有效運用於串座元件上。


This thesis is based on the concept of tandem structure. We has demonstrated high efficiency green organic light-emitting diode(OLED) with tandem structure. We investigated the charge generation characteristics of intermediate layer, consisting of conbination of dieletric material and metal muitilayer for a stacked organic light-emitting device. We utilized identical colors of green phosphorescent emitters to obtain high efficiency green electroluminescence. Compared with the traditional Organic light emitting diode, at the same current density, the stacked devices have higher efficiency in emitting. The research of stacked device mainly focuses on two points: the establishment of the connecting platform and high-efficiency stacked device. The themes of experiments in the thesis are: First,we choose phosphorescent material Ir(ppy)3 as the material of electrophosphorescence, and make high-efficiency organic green emitting diode by the selection of materials and optimization.Then,by the review of paper, I select many types as the connecting layers of stacked device. In the meantime, we can optimize the device, and to take a step further, manufacture the high-efficiency stacked green emitting devices.Finally,through the combination of high-efficiency green emitting standard device and stacked structure. We analyzed the connection layer penetration and capacitance.
(Ⅰ)When the emitting efficiency of the devices which passed the selections of materials, the match of energy level, the modulation of concentration in emitting layer, and the optimization of thickness , exhibited excellent performance. The current efficiency and driving voltage at 1000 cd/m2 of the standard units have reached 67.3 cd/A and 4.1 V, respectively. When it reached 10000 cd/m2, the driving voltage is 5.3 V, and the current efficiency is 58.3 cd/A. The above-mentioned performances are spectacular in sphere of small-moleculed phosphorescent green emitting system.
(Ⅱ)We make the devices before and after connecting layer have charge and recombine to emit by stacking green emitting device by optical analysis. Afterward, we select Metal Oxide/Metal/Metal Oxide as the connecting layer, optimize thickness and successfully and establish the manufacturing platform of stacked devices. The result of stacking can reach the effect in the theory of stacked current efficiency.
(Ⅲ)By analyzing the penetration and capacitors, we identified a composite connection layer can produce charges and successfully connect high-efficiency tandem devices.

Chapter 1 緒論 1.1 前言 1.2 有機發光二極體的發展與歷史沿革 1.3 發光原理與機制 1.4 基本結構 1.5 有機發光二極體元件材料介紹 1.5.1 陽極材料 1.5.2 電洞注入材料 1.5.3 電洞傳輸材料 1.5.4 電子傳輸材料 1.5.5 電子注入材料 1.5.6 陰極材料 1.5.7 連接層材料 1.6 串聯式有機發光二極體介紹 1.7 研究動機 Chapter 2 理論基礎 2.1 有機半導體傳輸機制 2.2 有機材料的吸收與放射 2.3 有機發光二極體的效率 2.4 濃度淬熄效應 2.5 連接層作用機制 Chapter 3 實驗流程與設備 3.1 實驗架構 3.2 實驗材料 3.2.1 基板 3.2.2 藥品 3.3 實驗設備 3.3.1 超音波清洗機 3.3.2 加熱板 3.3.3 旋轉塗佈機 3.3.4 紫外光曝光機 3.3.5 手套箱 3.3.6 熱蒸鍍機 3.3.7 膜厚量測系統 (α-Step ) 3.3.8 光電子光譜儀 (AC-2) 3.3.9 光電特性BJV量測系統 3.4 實驗步驟 3.4.1 ITO玻璃圖案化 3.4.2 有機材料與金屬電極蒸鍍 3.4.3 元件封裝 Chapter 4 結果與討論 4.1 高效率綠光倒置型有機發光二極體最佳化 4.1.1 發光層材料與摻雜 4.1.2 電洞傳輸層與電子傳輸層優化 4.2 連接層選擇與倒置型串座綠光元件最佳化 4.2.1 倒置型串座式綠光元件最佳化 4.3 連接層探討 4.3.1 MoO3/金屬/MoO3穿透度比較 4.3.2 連接層結構C-V比較 Chapter 5 結論

[1] J. Shinar and R. Shinar, “Organic light-emitting devices (OLEDs) and OLED-based chemical and biological sensors: an overview” J. Phys. D: Appl. Phys., 41 133001 (2008).
[2] S.R. Forrest, “The path to ubiquitous and low-cost organic electronic appliances on plastic” Nature, 428 911 (2004).
[3] http://www.samsung.com/
[4] http://www.lg.com/
[5] http://www.lighting.philips.com/,
[6] http://www.osram.com/osram_com/,
[7] M. Pope, H.P. Kallmann, and P. Magnante, “Electroluminescence in Organic Crystals” J. Chem. Phys., 38 2042 (1963).
[8] W. Helfrich and W.G. Schneider, “Recombination Radiation in Anthracene Crystals” Phys. Rev. Lett., 14 229 (1965).
[9] D.F. Williams and M. Schadt, “A simple organic electroluminescent diode” Proceedings of the IEEE, 58 476 (1970).
[10] P.S. Vincett, W.A. Barlow, R.A. Hann, and G.G. Roberts, “Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films” Thin Solid Films, 94 171 (1982).
[11] C.W. Tang and S.A. VanSlyke, “Organic electroluminescent diodes” Appl. Phys. Lett., 51 913 (1987).
[12] J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, and K. Mackay, “Light-emitting diodes based on conjugated polymers” Nature, 347 539 (1990).
[13] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, “Organic Electroluminescent Device with a Three-Layer Structure” Jpn. J. Appl. Phys., 27 L713 (1988).
[14] M. Era, C. Adachi, T. Tsutsui, and S. Saito, “Double-heterostructure electroluminescent device with cyanine-dye bimolecular layer as an emitter” Chem. Phys. Lett., 178 488 (1991).
[15] J. Kido, M. Kohda, K. Okuyama, and K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers” Appl. Phys. Lett., 61 761 (1992).
[16] J. Kido, M. Kimura, and K. Nagai, “Multilayer White Light-Emitting Organic Electroluminescent Device” Science, 267 1332 (1995).
[17] J. Kido, H. Shionoya, and K. Nagai, “Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole)” Appl. Phys. Lett., 67 2281 (1995).
[18] 黃孝文 and 陳金鑫 有機電激發光材料與元件 2005
[19] R.N. Marks, D.R. Baigent, N.C. Greenham, R. H. Friend, S.C. Moratti, A.B. Holmes, “Conjugated polymer light‐emitting diodes on silicon substrates” Appl. Phys. Lett., 65 2436 (1994).
[20] P. Tain, V. Bulović, P.E. Burrows, M.R. Gokhale, S.R. Forrest, M.E. Thompson, “A surface-emitting vacuum-deposited organic light emitting device” Appl. Phys. Lett., 70 2954 (1997).
[21] S. Naka, T. Miyashita, H. Okada, H. Onnagawa, Proceedings IDW'04, 1421 (2004).
[22] C.L. Lin, C. W. Chen, C. C. Wu, “An effective cathode structure for inverted top-emitting organic light-emitting devices” Appl. Phys. Lett., 85 2469 (2004).
[23] J.F. Chen, T. Y. Chu, S. Y. Chen, C. J. Chen, C. H. Chen, “Highly efficient and stable inverted bottom-emission organic light emitting devices” Appl. Phys. Lett., 89 053503 (2006).
[24] C. Adachi, R.C. Kwong, P. Djurovich, V. Adamovich, M.A. Baldo, M.E. Thompson, and S.R. Forrest, “Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials” Appl. Phys. Lett., 79 2082 (2001).
[25] T. Ishida, H. Kobayashi, and Y. Nakato, “Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements” J. Appl. Phys., 73 4344 (1993).
[26] S.W. Hwang, C.C. Chang, C.H. Chen, J.F. Chen, “High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units” Jpn. J. Appl. Phys., 43 6148 (2004).
[27] R.J. Holmes, H. Kanno, Y. Sun, S.K. Cohen, S.R. and Forrest, “White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer” Adv. Mater., 18 339 (2006).
[28] S.W. Tsang, C.E. Small, J. Kido, S. K. So, F. So, “Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer” Adv. Funct. Mater., 22 3261 (2012).
[29] J. Kido, T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer” Appl. Phys. Lett., 73 2866 (1993).
[30] Y.J. Lu, C.W. Chen, C.C. Wu, E.H. Wu, C.W. Chu, and Y. Yang, “Effective connecting architecture for tandem organic light-emitting devices” Appl. Phys. Lett., 87 241121 (2005).
[31] H. Zhang, Y. Dai, and D. Ma, “High efficiency tandem organic light-emitting devices with Al/WO[sub 3]/Au interconnecting layer” Appl. Phys. Lett., 91 123504 (2007).
[32] T.-Y. Cho, C.-L. Lin, and C.-C. Wu, “Microcavity two-unit tandem organic light-emitting devices having a high efficiency” Appl. Phys. Lett., 88 111106 (2006).
[33] T.-W. Lee, T. Noh, B.-K. Choi, M.-S. Kim, D.W. Shin, and J. Kido, “High-efficiency stacked white organic light-emitting diodes” Appl. Phys. Lett., 92 043301 (2008).
[34] M.F. Lamorte and D. Abbott, “Analysis of AlGaAs-GaInAs cascade solar cell under AM 0-AM 5 spectra” Solid-State Electronics, 22 467 (1979).
[35] J.K. Kim, E. Hall, O. Sjolund, and L.A. Coldren, “Epitaxially-stacked multiple-active-region 1.55 mu m lasers for increased differential efficiency” Appl. Phys. Lett., 74 3251 (1999).
[36] X. Guo, G.-D. Shen, G.-H. Wang, W.-J. Zhu, J.-Y. Du, G. Gao, D.-S. Zou, Y.-H. Chen, X.-Y. Ma, and L.-H. Chen, “Tunnel-regenerated multiple-active-region light-emitting diodes with high efficiency” Appl. Phys. Lett., 79 2985 (2001).
[37] Z. Shen, P.E. Burrows, V. Bulović, S.R. Forrest, and M.E. Thompson, “Three-Color, Tunable, Organic Light-Emitting Devices” Science, 276 2009 (1997).
[38] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yokoi, and J. Kido, in Proceedings of IDMC'03. 2003. p. p.413.
[39] L.S. Liao, K.P. Klubek, and C.W. Tang, “High-efficiency tandem organic light-emitting diodes” Appl. Phys. Lett., 84 167 (2004).
[40] W. Gao and A. Kahn, “Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: A direct and inverse photoemission study” Appl. Phys. Lett., 79 4040 (2001).
[41] T. Matsumoto, T. Nakada, J. Endo, K. Mori, N. Kawamura, A. Yoko, and J. Kido, “Late-News Paper: Multiphoton Organic EL device having Charge Generation Layer” SID Symposium Digest of Technical Papers, 34 979 (2003).
[42] T. Tsutsui and M. Terai, “Electric field-assisted bipolar charge spouting in organic thin-film diodes” Appl. Phys. Lett., 84 440 (2004).
[43] C.-C. Chang, S.-W. Hwang, C.H. Chen, and J.-F. Chen, “High-Efficiency Organic Electroluminescent Device with Multiple Emitting Units” Jpn. J. Appl. Phys., 43 6418 (2004).
[44] L.S. Liao, W.K. Slusarek, T.K. Hatwar, M.L. Ricks, and D.L. Comfort, “Tandem Organic Light-Emitting Diode using Hexaazatriphenylene Hexacarbonitrile in the Intermediate Connector” Adv. Mater., 20 324 (2008).
[45] S. Hamwi, J. Meyer, M. Kroger, T. Winkler, M. Witte, T. Riedl, A. Kahn, and W. Kowalsky, “The Role of Transition Metal Oxides in Charge-Generation Layers for Stacked Organic Light-Emitting Diodes” Adv. Funct. Mater., 20 1762 (2010).
[46] H. Kanno, R.J. Holmes, Y. Sun, S. Kena-Cohen, and S.R. Forrest, “White Stacked Electrophosphorescent Organic Light-Emitting Devices Employing MoO3 as a Charge-Generation Layer” Adv. Mater., 18 339 (2006).
[47] K.A. Knauer, E. Najafabadi, W. Haske, M.P. Gaj, K.C. Davis, C. Fuentes-Hernandez, U. Carrasco, and B. Kippelen, “Stacked inverted top-emitting green electrophosphorescent organic light-emitting diodes on glass and flexible glass substrates” Organic Electronics, 14 2418 (2013).
[48] J.-P. Yang, Q.-Y. Bao, Y. Xiao, Y.-H. Deng, Y.-Q. Li, S.-T. Lee, and J.-X. Tang, “Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping” Org.Electron., 13 2243 (2012).
[49] W.D. Gill, “Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole” J. Appl. Phys., 43 5033 (1972).
[50] R.M. Glaeser and R.S. Berry, “Mobilities of Electrons and Holes in Organic Molecular Solids. Comparison of Band and Hopping Models” J. Chem. Phys., 44 3797 (1966).
[51] E. Pinotti, A. Sassella, A. Borghesi, and R. Tubino, “Electrical characterization of organic semiconductors by transient current methods” Synth. Met., 122 169 (2001).
[52] C. Adachi, M.A. Baldo, M.E. Thompson, and S.R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device” J. Appl. Phys., 90 5048 (2001).
[53] J. Brinstock, G. He, S.Murano, A. Werner, and O. Zeika, in Proceedings of SID’08. 2008. p. p822.

無法下載圖示 全文公開日期 2019/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE