研究生: |
盧星全 Hsing-Chuan Lu |
---|---|
論文名稱: |
以科技接受模式探討消費者個資去識別化對智慧零售導入之影響 De-identification of Consumer’s information in Smart retailing : An application of TAM |
指導教授: |
曾盛恕
Seng-Su Tsang |
口試委員: |
呂志豪
Shih-Hao Lu 蔣成 Chen Chiang |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 企業管理系 Department of Business Administration |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 個資 、去識別化 、大數據分析 、智慧零售 、消費者價值享受 |
外文關鍵詞: | Personal data, anonymization, big data analysis, smart retail, consumer value enjoyment |
相關次數: | 點閱:760 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自2019年COVID-19疫情爆發以來,全球生活方式發生重大變化。零售業需要思考新商業模式,引進新技術提高門店效率,提供更舒適的購物體驗。消費者需求轉向非接觸式服務,智慧零售系統提升品牌形象。個人資訊保護意識成熟,去識別化技術保護數據隱私至關重要。
本研究的目的在探討智慧零售系統導入對消費者的影響,從消費價值和個人資料去識別化兩個方面進行研究。雖然智慧零售系統的導入能夠提高客戶體驗,但同時也帶來了隱私風險。若缺乏有效的資安技術防護,可能會影響顧客的購買意願和服務體驗。
本研究基於科技接受模式理論,探討消費者價值享受和個人資料去識別化等因素對智慧零售系統在零售門店中的接受程度是否會有影響。共蒐集到455份有效問卷,使用Smart PLS方法驗證模型。
研究結果顯示,消費者對智慧零售系統的個人資料去識別化、價值享受、知覺易用性和知覺有用性之間存在顯著的正向影響關係。同時,消費者的知覺易用性和知覺有用性對使用態度均具有顯著的正向影響作用,並且使用態度對行為意向也具有顯著的正向影響作用。
因此,本研究建議未來智慧零售系統的開發者應更加重視消費者對個人資料的隱私保護,並且在設計智慧零售系統時應更加注重易用性和有用性,以提高消費者的滿意度和使用意願。
Since the outbreak of the COVID-19 pandemic in 2019, there have been significant changes in global lifestyles. The retail industry needs to consider new business models, introduce new technologies to improve store efficiency, and provide more comfortable shopping experiences. Consumer demand has shifted towards non-contact services, and smart retail systems have improved brand image. Mature personal information protection awareness and de-identification technology are crucial for protecting data privacy.
This study aims to explore the impact of the introduction of smart retail systems on consumers, from the perspectives of consumer value and personal data de-identification. While the introduction of smart retail systems can improve customer experience, it also brings privacy risks. Without effective cybersecurity measures, it may affect customers' willingness to purchase and service experience.
Based on the Technology Acceptance Model, this study investigates whether factors such as consumer value enjoyment and personal data de-identification affect the acceptance of smart retail systems in retail stores. A total of 455 valid questionnaires were collected, and the Smart PLS method was used to validate the model.
The results showed that there is a significant positive relationship between consumers' personal data de-identification, value enjoyment, perceived ease of use, and perceived usefulness towards smart retail systems. Moreover, consumers' perceived ease of use and perceived usefulness have a significant positive impact on usage attitude, which in turn has a significant positive impact on behavioral intention. Therefore, this study suggests that future developers of smart retail systems should pay more attention to consumer privacy protection and prioritize usability and usefulness in designing smart retail systems to improve customer satisfaction and usage intention.
Ajzen, I. (2002). Perceived behavioral control, self‐efficacy, locus of control, and the theory of planned behavior Journal of applied social psychology, 32(4), 665-683.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of marketing Science, 16(1), 74-94.
Baker, J., Grewal, D., & Parasuraman, A. (1994). The influence of store environment on quality inferences and store image. Journal of the Academy of marketing Science, 22(4), 328-339.
Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological bulletin, 56(2), 81-105.
Chin, W. (1998). Issues and opinion on structural equation modeling management. Information Systems Quarterly, 22(1), 19-24.
Chin, W. W., & Newsted, P. R. (1999). Structural Equation Modeling Analysis with Small Samples Using Partial Least Squares. In R. Hoyle (Ed.), Statistical Strategies for Small Sample Research (pp. 307- 341). Sage Publications.
Choudhary, A., & Chaudhury, S. (2016). Video analytics revisited. IET Computer Vision, 10(4), 237-249. https://doi.org/10.1049/iet-cvi.2015.0321
Davis, F. D. (1985). A technology acceptance model for empirically testing new end-user information systems: Theory and results Massachusetts Institute of Technology].
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management science, 35(8), 982-1003.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of marketing research, 18(3), 382-388.
Golafshani, N. (2003). Understanding reliability and validity in qualitative research. The qualitative report, 8(4), 597-607.
Gong, M., Xu, Y., & Yu, Y. (2004). An enhanced technology acceptance model for web-based learning. Journal of Information Systems Education, 15(4), 365-374.
Hair, J., Andreson, R., Tatham, R., & Black, W. (1998). Multivariate data analysis. 5th (ed) Prentice-Hall Inc. Unites States of America.
Holbrook, M. B., & Hirschman, E. C. (1982). The experiential aspects of consumption: Consumer fantasies, feelings, and fun. Journal of consumer research, 9(2), 132-140.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural equation modeling: a multidisciplinary journal, 6(1), 1-55.
Intel. (2022a). Grocery chain harnesses the power of AI video analytics for shopper insights. https://www.intel.com/content/www/us/en/customer-spotlight/stories/town-talk-foods-customer-story.html
Intel. (2022b). Interactive Kiosk Solutions and Technology. Retrieved 10/26 from https://www.intel.com.tw/content/www/tw/zh/internet-of-things/iot-solutions/kiosk/interactive-and-digital-kiosks.html
Lemon, K. N., & Verhoef, P. C. (2016). Understanding Customer Experience Throughout the Customer Journey. Journal of marketing, 80(6), 69-96. https://doi.org/10.1509/jm.15.0420
Meden, B., Peer, P., & Struc, V. (2018). Selective face deidentification with end-to-end perceptual loss learning. 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI),
Nasermoadeli, A., Ling, K. C., & Maghnati, F. (2013). Evaluating the impacts of customer experience on purchase intention. International Journal of business and management, 8(6), 128-138.
Padilla-López, J. R., Chaaraoui, A. A., & Flórez-Revuelta, F. (2015). Visual privacy protection methods: A survey. Expert Systems with Applications, 42(9), 4177-4195.
Ratna, V. V. (2020). Conceptualizing Internet of Things (IoT) model for improving customer experience in the retail industry. International Journal of Management, 11(5), 973-981.
Ribaric, S., Ariyaeeinia, A., & Pavesic, N. (2016). De-identification for privacy protection in multimedia content: A survey. Signal Processing: Image Communication, 47, 131-151.
Sherman, E., Mathur, A., & Smith, R. B. (1997). Store environment and consumer purchase behavior: mediating role of consumer emotions. Psychology & Marketing, 14(4), 361-378.
Shopon, M., Tumpa, S. N., Bhatia, Y., Kumar, K. P., & Gavrilova, M. L. (2021). Biometric systems de-identification: Current advancements and future directions. Journal of Cybersecurity and Privacy, 1(3), 470-495.
SOPHOS. (2022). The State of Ransomware 2022. https://www.sophos.com/en-us/content/state-of-ransomware
Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach's alpha. International journal of medical education, 2, 53-55.
Zhu, B., Fang, H., Sui, Y., & Li, L. (2020). Deepfakes for medical video de-identification: Privacy protection and diagnostic information preservation. Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society,
中華民國法務部. (1995). 個人資料保護法. Retrieved 12/20 from https://law.moj.gov.tw/LawClass/LawAll.aspx?PCode=I0050021
中華民國法務部. (1996). 個人資料保護法施行細則. Retrieved 12/21 from http://www.lia-roc.org.tw/index06/law/rlaw41.htm
吳明陵. (2015). 個人資料保護法之研究 [A Study on the Personal Information Protection Act]. 萬能商學學報(20), 105-117.
洪新原, 梁定澎, & 張嘉銘. (2005). 科技接受模式之彙總研究. 資訊管理學報, 12(4), 211-234.
洪煥周. (2021). 零售業採三大關鍵技術 發掘疫情新商機. Retrieved 2022/08/31 from https://www.digitimes.com.tw/iot/article.asp?id=0000604672_4D35G1SM8ROBY51EOKP17
經濟部統計處. ( 2022). 110年12月批發、零售及餐飲業營業額統計. Retrieved 09/30 from https://www.moea.gov.tw/MNS/dos/bulletin/Bulletin.aspx?kind=8&html=1&menu_id=6727&bull_id=9643
電商教室, S. (2019). 什麼是 POS 系統?功能優點、如何挑選一次看懂!. Retrieved 10/30 from https://blog.shopline.tw/what-is-pos/
熊老闆的網路視界. (2020). 零售店營運的關鍵人物 – 店長. Retrieved 12/23 from https://bearboss.blog/2020/04/07/retail-store-manager-crm/
數位時代. (2022). 企業「資安防護」大全!有哪些常見漏洞,又該怎麼補上?. Retrieved 12/30 from https://www.bnext.com.tw/article/67921/corp-inform-security-pedia
衛生福利部. (2022). COVID-19 防疫關鍵決策時間軸. Retrieved 12/27 from https://covid19.mohw.gov.tw/ch/sp-timeline0-205.html