簡易檢索 / 詳目顯示

研究生: Ilham Kuncoro Adilogo
Ilham Kuncoro Adilogo
論文名稱: 全自主螺旋槳葉片校正機專家系統開發
DEVELOPMENT OF EXPERT SYSTEM FOR AUTONOMOUS PROPELLER BLADE CORRECTION MACHINE
指導教授: 林其禹
Chyi-Yeu Lin
口試委員: 林柏廷
Po-Ting Lin
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 64
中文關鍵詞: 螺旋槳校正有限元素分析彈塑性分析專家系統工業自動化CAE 結構分析
外文關鍵詞: Propeller Blade Shape-Correction, Finite Element Analysis, Elastoplastic Analysis, Expert System, Industrial Automation, CAE
相關次數: 點閱:378下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究介紹了使用NC機床進行自動螺旋槳葉片校正的專家系統的開發。採用有限元方法對螺旋槳葉片進行分析,可以建立葉片不同位置的塑性變形和位移之間的關係。通過推導各點的位移/變形方程和相鄰變形效應,為實現目標,一套最佳化方法被接續採用。

在最初的實驗中,校正了兩個葉片以驗證系統的預測能力。結果表明,預測誤差與實際誤差非常吻合,由於校正後的葉片回彈效應,最高偏差約為0.15mm。降低NC機床產生的指定位移值,可導致變形吻合偏離量測值。

隨後,一批12個螺旋槳葉片按照預定義的約束條件進行三輪校正過程。校正結果符合0-0.5mm的理想公差範圍,確保符合製造質量標準。

實驗證明,螺旋槳校正專家系統在減少人力成本方面是可靠和有效的,同時可確保校正的準確性。本系統內的知識庫便於輕鬆複製和功能,機器操作員不須具備太多經驗。這項研究的結果有助於提升螺旋槳葉片校正過程的自動化技術,提高製造效率和品質控制。


This research presents the development of an expert system for autonomous propeller blade correction using an NC machine. The propeller blades are analyzed by finite element method, allowing the establishment of the relationship between plastic deformation and displacement on different positions of the blade. By deriving the displacement-deformation equation for each point and neighboring deformation effect, an optimization approach based on the goal attainment method is applied.
In the initial experiment, two blades are corrected to validate the system's predictive capabilities. The results show a close match between the predicted and actual errors, with the highest deviation of approximate 0.15mm due to springback effects in the correcting machine. The designated displacement generated by the NC machine is assigned, resulting in correct deformation that deviates from the predicted values.
Subsequently, a batch of 12 propeller blades is subjected to the correction process within three rounds as per the predefined constraints. The obtained results meet the desired tolerance range of 0-0.5mm, ensuring compliance with the manufacturing quality standards.
The propeller correction expert system proves to be reliable and effective in reducing human effort and costs while ensuring the accuracy of corrections. The knowledge base within the system facilitates easy duplication and functionality, regardless of the machine operator. The findings from this research contribute to the automation of propeller blade correction processes, improving manufacturing efficiency and quality control.

ACKNOWLEDGMENTS iv 摘要 v ABSTRACT vi TABLE OF CONTENT vii LIST OF FIGURE ix LIST OF TABLE xi 1. CHAPTER 1 INTRODUCTION 1 1.1. Background 1 1.2. Research Objective 3 1.3. Research Scope Limitation 4 1.4. Thesis Structure 5 2. CHAPTER 2 LITERATURE REVIEW 7 2.1. Plastic Deformation and Strain Hardening 7 2.1.1. Plastic Deformation 7 2.1.2. Strain Hardening 8 2.2. Finite Element Method 10 2.3. Multiobjective Optimization 13 2.3.1. Goal Attaintment method 16 2.4. Expert system 17 3. CHAPTER 3 SYSTEM ESTABLISHMENT 19 3.1. System Architecture 19 3.1.1. Device measurement concept 20 3.1.2. PLC and PC comunication 21 3.2. Propeller Construction and Deviation Distribution 22 3.2.1. Deviation definition and measurement method 25 3.3. Finite Element Analysis 26 3.3.1. Displacement and deformation correlation 29 3.4. Equation Establishment and Optimization 32 3.5. Optimization Test and Heuristic Approach 38 3.6. Actual displacement and deformation data collection 42 3.6.1. Automatic data collection 43 3.7. Calibration Strategy 45 3.7.1. Strain hardening compensation 45 3.8. Expert System Flowchart 47 4. CHAPTER 4 RESULTS AND DISCUSSION 50 4.1. Adjustment Results 50 4.2. Expert system performance 54 5. CHAPTER 5 CONCLUSIONS 56 5.1. Conclusions 56 REFERENCES 58 APPENDIX A 60

[1] Pfeifer, M. (2009). Degradation and Reliability of Materials. Materials Enabled Designs, 161-187.
[2] Yang, G., & Park, S. (2019). Deformation of Single Crystals, Polycrystalline Materials, and Thin Films: A Review. Materials, 12(12), 2003.
[3] Gupta, R. K., Christy Mathew, and P. Ramkumar. "Strain hardening in aerospace alloys." Frontiers in Aerospace Engineering 4.1 (2015): 1-13.
[4] Logan, Daryl L. First Course in the Finite Element Method, Enhanced Edition, SI Version. Cengage Learning, 2022.
[5] Knowles, N. (1984). Finite element analysis. Computer-Aided Design, 16(3), 134-140.
[6] E. Onate, structural FEA analysis, vol. 53, no. 9. 2019.
[7] Marler, R. Timothy, and Jasbir S. Arora. "Survey of multi-objective optimization methods for engineering." Structural and multidisciplinary optimization 26 (2004): 369-395.
[8] Jackson, Peter. "Introduction to Expert Systems." Addison-Wesley, 1998.
[9] Deb, Kalyanmoy. "Multi-objective optimization using evolutionary algorithms." John Wiley & Sons, Ltd, 2001.
[10] A. S. Sabau, W. D. J. M. Porter, "Alloy shrinkage factors for the investment casting of 17-4PH stainless steel parts,", Metallurgical Materials Transactions B,vol. 39, no. 2, pp. 317-330, 2008
[11] V. Deslandres and H. Pierreval, "An expert system prototype assisting the statistical validation of simulation models," Simulation, vol. 56, no. 2, pp. 79-89, 1991.
[12] A. Mamun, R. Moat, J. Kelleher, and P. Bouchard, "Origin of the Bauschinger
effect in a polycrystalline material," Materials Science and Engineering, vol. 707, pp. 576-584, 2017.
[13] G. J. Hwang and S. S. Tseng, "On building a medical diagnostic system of acute exanthemas," Journal of the Chinese Institute of Engineers, vol. 14, no. 2, pp. 185-195, 1991.
[14] T. W. Kirkman. (1996). Least Squares Fitting (Regression).
[15] D. L. Logan, A first course in the finite element method. Cengage Learning, 2016.
[16] R.C.Hibbeler, Engineering Mechanics STATICS. U.S.A.: Pearson. 2017.
[17] Gere, J. M., Mechanics of Materials,6, Brooks/Cole, 2004.
[18] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, "A survey of research on cloud robotics and automation," IEEE Transactions on automation science engineering, vol. 12, no. 2, pp. 398-409, 2015.

QR CODE