簡易檢索 / 詳目顯示

研究生: 簡育綸
Yu-Lun Chien
論文名稱: 以電路板廠廢水為原料製造光電解水產氫之氧化銅奈米顆粒之研究
The Study of Converting CuO Nano-particles From the Waste Water of PCB Factory For Water Splitting Reaction.
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 林昇佃
Shawn-Den Lin
蘇威年
Wei-Nien Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 99
中文關鍵詞: 光電化學電池廢水奈米顆粒氧化銅產氫水分解電路板
外文關鍵詞: photo-electrochemical cell, wastewater, nano-particle, copper oxide, hydrogen energy, water splitting, PCB
相關次數: 點閱:199下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氧化銅乃是一種光電化學電池 ( Photo-electrochemical cell, PEC) 的可行材料之一,可吸收光能並分解水產生氫氣。本研究以儀器分析電路板廠的高銅含量廢水,並藉由氨水進行廢水中雜質的去除,希望能使之成為以solution based method合成氧化銅奈米顆粒的可行原料,並調控製程參數,以光學特性及電化學特性探討合成出的成品的PEC表現。

本研究實驗數據表明,在利用氨水去除鐵雜質後,廢水中的鐵去除效果良好。氨水添加莫耳比例應在450:1以上;廢水與氫氧化鈉合成氧化銅時,反應溫度若為55 oC則能得到最佳的光電流表現,這是由於在此反應溫度區間所得到的氧化銅顆粒結晶性最佳。另外,本研究發現由廢水製成的電極表面可能覆蓋有殘餘的硫酸鈉晶體,因此合成顆粒後需要充分的清洗,避免造成電極表面被遮蔽而降低光電流。以反應溫度55 oC及500 oC溫度燒結一小時所製備出的電極,其能隙為1.87 eV;由於電極具有疏鬆的多孔性結構,因此可以有更大的比表面積,而可以得到較大的光電流。在施加偏壓-0.55 V vs. sat. Ag/AgCl,電解液使用1 M NaOH,光源強度為1 sun (AM1.5G) 時,光電流密度可達-1.05 mA/cm2,對應的轉換效率為0.38 %,此值較文獻略低,然而考量廢水處理的環保價值以及雜質去除的優良效率,可以認為以高銅廢水製備氧化銅奈米顆粒乃是具有可行性之製程。


CuO is one of the possible materials of photo-electrochemical cell (PEC). It can be used for splitting water and generation of hydrogen via absorbing light. In this study, I analyzed ingredients of the waste water and removed the impurities, expecting that it can be a possible raw material source of converting CuO nano-particles by solution-based method. I also adjusted the parameters of process and discuss the PEC performance of electrode made from the waste water.

The experiment data shows that the molar ratio of adding ammonium to CuSO4 in the waste water should be 450 to 1 at least. This study found that the surface of electrode made from the waste water could be covered with some Na2SO4 crystal and lower the current density. To remove that, the powder should be washed sufficiently. For powders prepared at 55 oC and sintered at 500 oC for 1 hour, the bandgaps for these electrodes were estimated to be about 1.87 eV, and the porous structure of the nanosized CuO films increased surface area and thus led to a high photocurrent, i.e. 1.05 mA/cm2. These films demonstrated 0.38% solar conversion efficiency at an applied voltage of -0.55 V vs. saturated Ag/AgCl in 1 M NaOH electrolyte with 1 sun (AM1.5G) illumination. The charge carrier density was estimated to be 6.28x1019 cm-3. This relatively high charge carrier density may be due to the high surface area and short transport distance to the electrode/electrolyte interface in the porous nanostructure.

摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 IX 符號表 X 第一章 緒論 1 第二章 文獻回顧 5 2.1 氫氣生成動力學探討 10 2.2 高銅廢水去除重金屬的方法 16 2.3 不同金屬參雜CuO奈米觸媒的效果與影響 21 2.4 不同構型與不同製備方式所製作出的CuO催化效果討論 25 第三章 實驗方法與設備 28 3.1 粉末製備 28 3.2 性質鑑定 31 第四章 實驗結果與討論 40 4.1 廢水除鐵效果討論 40 4.2 電極結構討論 46 4.3 電極成分討論 50 4.4 PEC測試表現 57 4.5 半導體性質計算 65 第五章 結論與建議 75 第六章 參考文獻 76

1. Graßl, H., J. Kokott, M. Kulessa, J. Luther, F. Nuscheler, R. Sauerborn, H.-J. Schellnhuber, R. Schubert, and E.-D. Schulze, World in Transition Towards Sustainable Energy Systems. 2003, London, UK: Earthscan. p. 3.
2. Intergovernmental Panel on Climate Change, Climate Change 2007: Impacts, Adaptation and Vulnerability. 2007: Cambridge Univ. Press, UK.
3. Timilsina, G.R., L. Kurdgelashvili, and P.A. Narbel, Solar energy: Markets, economics and policies. Renewable and Sustainable Energy Reviews, 2012. 16(1): p. 449-465.
4. 胡湘玲, 太陽能源 Our Energy Future - Powered by the Sun Powered by the Sun. 2009, 台北: 天下遠見. p. 6-8.
5. Global climate & Energy Project. Energy (available energy) Flow Charts. Available from: https://gcep.stanford.edu/index.html.
6. Williamson, S.S., S.M. Lukic, and A. Emadi, Comprehensive drive train efficiency analysis of hybrid electric and fuel cell vehicles based on motor-controller efficiency modeling. Ieee Transactions on Power Electronics, 2006. 21(3): p. 730-740.
7. Chiang, C.Y., K. Aroh, N. Franson, V.R. Satsangi, S. Dass, and S. Ehrman, Copper oxide nanoparticle made by flame spray pyrolysis for photoelectrochemical water splitting - Part II. Photoelectrochemical study. International Journal of Hydrogen Energy, 2011. 36(24): p. 15519-15526.
8. Schultz, J.W. and M.M. Lohrengel, Stability, reactivity and breakdown of passive films. Problems of recent and future research. Electrochim Acta, 2000. 45: p. 2499-2513.
9. Chapin, D.M., C.S. Fuller, and G.L. Pearson, A New Silicon p-n junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys., 1954. 25: p. 676.
10. 雷永泉, 新能源材料. 1st ed. 2004, 台北: 新文京開發出版股份有限公司. p. 99-103.
11. Qian, X.M., Y.B. Bai, T.J. Lee, and X.Y. Tang, Progress in the Graetzel-Type Photo-electro-chemical Solar Cells. Progress in chemistry, 2000. 12(2).
12. 張正華、李陵嵐、葉楚平、楊平華, 有機與塑膠太陽能電池. 1st ed. 2007, 台北: 五南圖書出版公司. p. 44-46.
13. Regan, B.O. and G. M., A Low-Cost, High-Efficiency Solar Cells Based on Dye-Sensitized Colloidal TiO2 Films. Nature, 1991. 353: p. 737.
14. Gratzel, M., Mesoporous oxide junctions and nanostructured solar cells. Current Opinion in Colloid & Interface Science, 1999. 4(4): p. 314-321.
15. 李權倍, 奈米多孔性二氧化鈦光電極微結構設計在量子點敏化太陽能電池的應用. 2006, 國立成功大學化學工程學系.
16. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 37: p. 238.
17. Frank, S.N. and A.J. Bard, Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. J.Phys.Chem., 1977. 81: p. 1484-1486.
18. Khalil, L.B., M.W. Rophael, and W.E. Mourad, The removal of the toxic Hg(II) salts from water by photocatalysis. Applied Catalysis B-Environmental, 2002. 36(2): p. 125-130.
19. Khalil, L.B., W.E. Mourad, and M.W. Rophael, Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Applied Catalysis B-Environmental, 1998. 17(3): p. 267-273.
20. Ichihashi, Y., H. Yamashita, and M. Anpo, The in-situ characterization of titanium oxides prepared in the zeolite cavities and framework and their photocatalytic reactivities for the direct decomposition of NO into N2 at 275K. Studies in Surface Science and Catalysis, 1997. 105(2): p. 1609-1616.
21. Anpo, M., H. Yamashita, Y. Ichihashi, and S. Ehara, Photocatalytic Reduction of Co2 with H2o on Various Titanium-Oxide Catalysts. Journal of Electroanalytical Chemistry, 1995. 396(1-2): p. 21-26.
22. Yamashita, H., A. Shiga, S. Kawasaki, Y. Ichihashi, S. Ehara, and M. Anpo, Photocatalytic Synthesis of CH4 and CH3OH from CO2 and H2O on Highly Dispersed Active Titanium-Oxide Catalysts. Energy Conversion and Management, 1995. 36(6-9): p. 617-620.
23. Barakat, M.A., Y.T. Chen, and C.P. Huang, Removal of toxic cyanide and Cu(II) Ions from water by illuminated TiO2 catalyst. Applied Catalysis B-Environmental, 2004. 53(1): p. 13-20.
24. Nakano, K., E. Obuchi, S. Takagi, R. Yamamoto, T. Tanizaki, M. Taketomi, M. Eguchi, K. Ichida, M. Suzuki, and A. Hashimoto, Photocatalytic treatment of water containing dinitrophenol and city water over TiO2/SiO2. Separation and Purification Technology, 2004. 34(1-3): p. 67-72.
25. Dionysiou, D.D., G. Balasubramanian, M.T. Suidan, A.P. Khodadoust, I. Baudin, and M. Laine, Rotating disk photocatalytic reactor: Development, characterization, and evaluation for the destruction of organic pollutants in water. Water Research, 2000. 34(11): p. 2927-2940.
26. Parra, S., J. Olivero, and C. Pulgarin, Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Applied Catalysis B-Environmental, 2002. 36(1): p. 75-85.
27. Parra, S., S. Malato, and C. Pulgarin, New integrated photocatalytic-biological flow system using supported TiO2 and fixed bacteria for the mineralization of isoproturon. Applied Catalysis B-Environmental, 2002. 36(2): p. 131-144.
28. Herrmann, J.M., C. Guillard, and P. Pichat, Heterogeneous photocatalysis : an emerging technology for water treatment. Catal. Today., 1993. 17: p. 7-20.
29. Hao, Y.Z., M.Z. Yang, C. Yu, S.M. Cai, M.S. Liu, L.Z. Fan, and Y.F. Li, Photoelectrochemical studies on acid-doped polyaniline as sensitizer for TiO2 nanoporous film. Solar Energy Materials & Solar Cell, 1998. 56: p. 56-75.
30. 羅瑾、周靜、祖延兵, 電沉積二氧化鈦納米微粒膜的光電化學性能和表面形貌研究. 高等學校化學學報, 1998. 19: p. 1484-1487.
31. Barbe, C.J., F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Gratzel, Nanocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Ceram. Soc., 1997. 80: p. 3157-3171.
32. Shen, W.R., W.K. Zhao, F. He, and Y.L. Fang, TiO2-Based Photocatalysis and Its Applications for Waste Water Treatment. Progress in Chemistry, 1998. 10(4): p. 349-361.
33. Hoyer, P. and H. Weller, Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films. J. Phys. Chem., 1995. 99(38): p. 14096-14100.
34. Redmond, G., A. O'Keeffe, C. Burgess, C. MacHale, and D. Fitzmaurice, Spectroscopic determination of the flatband potential of transparent nanocrystalline zinc oxide films. The Journal of Physical Chemistry, 1993. 97(42): p. 11081-11086.
35. Hodes, G., Nanocrystalline Photoelectrochemical Cells. Journal of The Electrochemical Society, 1992. 139(11): p. 3136.
36. Torimoto, T., S. Nagakubo, M. Nishizawa, and H. Yoneyama, Photo-Electrochemical properties of size-quantized CdS thin films prepared by an electrochemical method. Langmuir, 1998. 14: p. 7077-7081.
37. Torimoto, T., N. Tsumura, M. Miyake, M. Nishizawa, T. Sakata, H. Mori, and H. Yoneyama, Preparation and Photoelectrochemical Properties of Two-Dimensionally Organized CdS Nanoparticle Thin Films. Langmuir, 1999. 15: p. 1853-1858.
38. Sakohara, S., L.D. Tickanen, and M.A. Anderson, Luminescence properties of thin zinc oxide membranes prepared by the sol-gel technique: change in visible luminescence during firing. The Journal of Physical Chemistry, 1992. 96(26): p. 11086-11091.
39. Orel, B., M. Maček, F. Švegl, and K. Kalcher, Electrochromism of iron oxide films prepared via the sol-gel route by the dip-coating technique. Thin Solid Films, 1994. 246(1-2): p. 131-142.
40. 錢新明、呂紅輝、張昕彤、李英順、白玉白、李鐵津、湯心頤, 無定形納米Fe2O3微粒的光電化學特性. 吉林大學自然科學學報, 1999. 2(2): p. 87.
41. Bedia, I., S. Hotchandani, and P.V. Kamat, Preparation And Photoelectrochemical Characterization Of Thin Sno(2) Nanocrystalline Semiconductor-Films And Their Sensitization With Bis(2,2'-Bipyridine)(2,2'-Bipyridine-4,4'-Dicarboxylic Acid)Ruthenium(Ii) Complex. Journal of Physical chemistry, 1994. 98(15): p. 4133-4140.
42. Nasr, C., S. Hotchandani, P.V. Kamat, S. Das, K.G. Thomas, and M.V. George, Electrochemical and Photoelectrochemical Properties of Monoaza-15-crown ether Linked Cyanine Dyes: Photosensitization of Nanocrystalline SnO2 Films. Langmuir, 1995. 11: p. 1777-1783.
43. Bougrov, V., M.E. Levinshtein, S.L. Rumyantsev, and A. Zubrilov, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe. 2001, New York: John Wiley & Sons, Inc. p. 1-30.
44. Linsebigler, A.L., G. Lu, and J.T. Yates, Photocatalysis on TiO2 Surfaces : Principles, Mechanisms, and Select Results. Chem. Rev., 1995. 95: p. 735-758.
45. Fox, M.A. and M.Y. Dulay, Heterorgeneous Photocatalysis. Chem. Rev., 1993. 93: p. 341-357.
46. Gratzel, M., Photoelectrochemical cells. Nature, 2001. 414(6861): p. 338-44.
47. CRC Handbook of Chemistry and Physics. 70th ed. 1990: Boca Raton (FL):CRC Press.
48. Ma, X.C. and G.F. Xiu, Progress of Photocatalysis Material. J. of New Technology, 2012. 9.
49. LeFormal, F., On the Morphology and Interfaces of Nanostructured Hematite Photoanodes for Solar-Driven Water Splitting. 2011, EPFL.
50. Chiang, C.Y., Y. Shin, K. Aroh, and S. Ehrman, Copper oxide photocathodes prepared by a solution based process. International Journal of Hydrogen Energy, 2012. 37(10): p. 8232-8239.
51. Gratzel, M., Heterogeneous Photochemical Electron Transfer. 1989, CRC Press, Inc.: Boca Raton, Florida. p. 118.
52. Hagfeldt, A. and M. Gratzel, Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews, 1995. 95(1): p. 49-68.
53. Albery, W.J., P.N. Bartlett, C.P. Wilde, and J.R. Darwent, A General model for dispersed kinetics in heterogeneous systems. J. Am. Chem. Soc. , 1985. 107: p. 1854-1858.
54. 吳世全、楊偉智, 科學園區半導體產業廢水處理方法簡介, in 工安環保報導. 2004, 經濟部工業局. p. 72-73.
55. 陳元慶、林淙敏、王振豐、張嫈女, 印刷電路板至作用硫酸/雙氧水蝕刻液的回收處理及其資源化之現況. 工業污染防治季刊, 1996. 59: p. 203.
56. 張王冠, 印刷電路板業廢水處理程序評估案例, in 化工資訊. 1991. p. 76-92.
57. Chiang, C.Y., Y. Shin, and S. Ehrman, Dopant Effects on Copper Oxide Photoelectrochemical Cell Water Splitting. Energy Procedia, 2014. 61: p. 1799-1802.
58. Morosin, The Crystal Structures of Copper Tetraammine Complexes. A. Cu(NH3)4SO4.H2O and Cu(NH3)4SeO4. Acta Cryst., 1969. B25: p. 19-30.
59. Glemser, O. and H. Sauer, Tetraamminecopper (II) Sulfate. 2nd ed. Handbook of Preparative Inorganic Chemistry. Vol. 1. 1963, New York: Academic Press. p. 1021.
60. Zhou, Y.C. and J.A. Switzer, Gavanostatic electrodeposition and microstructure of copper(I) oxide films. Mater. Res. Innovat., 1998. 2(1): p. 22-27.
61. Reid, J., Copper electrodeposition: Principles and recent progress. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2001. 40(4B): p. 2650-2657.
62. Ottosson, M. and J.O. Carlsson, Chemical vapour deposition of Cu2O and CuO from CuI and O2 or N2O. Surface and Coatings Technology, 1996. 78(1-3): p. 263-273.
63. Chiang, C.Y., Y. Shin, and S. Ehrman, Li Doped CuO Film Electrodes For Photoelectrochemical Cells. Journal of The Electrochemical Society, 2012. 159(2): p. B227-B231.
64. Kose, S., E. Ketenci, V. Bilgin, F. Atay, and I. Akyuz, Some physical properties of In doped copper oxide films produced by ultrasonic spray pyrolysis. Current Applied Physics, 2012. 12(3): p. 890-895.
65. Messing, G.L., S.C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. Journal of the American Ceramic Society, 1993. 76(11): p. 2707-2726.
66. Maruyama, T., Copper oxide thin films prepared from copper dipivaloylmethanate and oxygen by chemical vapor deposition. Japen Journal of Applied Physics, 1998. 37: p. 4099-4102.
67. 林鴻明, 台灣奈米結構材料與技術之研究現況, in 化工科技與商情. 2002. p. 26-28.
68. Uyeda, R., Studies of Ultrafine Particles in Japan: Crystallography. Methods of Preparation and Technological Applications. Progress in Materials Science, 1991. 35: p. 1-96.
69. Santra, K., C.K. Sarkar, M.K. Mukherjee, and B. Ghosh, Copper oxide thin films grown by plasma evaporation method. Thin Solid Films, 1992. 213(2): p. 226-229.
70. Gong, Y.S., C. Lee, and C.K. Yang, Atomic force microscopy and Raman spectroscopy studies on the oxidation of Cu thin films. Journal of Applied Physics, 1995. 77: p. 5422-5425.
71. Mohamed Basith, N., J. Judith Vijaya, L. John Kennedy, and M. Bououdina, Structural, optical and room-temperature ferromagnetic properties of Fe-doped CuO nanostructures. Physica E: Low-dimensional Systems and Nanostructures, 2013. 53: p. 193-199.
72. Hsu, Y.K., C.H. Yu, H.H. Lin, Y.C. Chen, and Y.G. Lin, Template synthesis of copper oxide nanowires for photoelectrochemical hydrogen generation. Journal of Electroanalytical Chemistry, 2013. 704: p. 19-23.
73. Kita, R., K. Kawaguchi, T. Hase, T. Koga, R. Itti, and T. Morishita, Effect of oxygen ion energy on the growth of CuO films by molecular beam epitaxy using mass-separated low energy O+ beams. J. Mater. Res., 1994. 9: p. 1280-1283.
74. Stangl, J., V. Holý, and G. Bauer, Structural properties of self-organized semiconductor nanostructures. Reviews of Modern Physics, 2004. 76(3): p. 725-783.
75. Jaeger, R.C., Introduction to Microelectronic Fabrication. 2002, Upper Saddle River: Prentice Hall.
76. Drobny, V.F. and D.L. Pulfrey, Properties Of Reactively-Sputtered Copper Oxide Thin Films. Thin Solid Films, 1979. 61: p. 89-98.
77. Das, S. and T.L. Alford, Structural and optical properties of Ag-doped copper oxide thin films on polyethylene napthalate substrate prepared by low temperature microwave annealing. Journal of Applied Physics, 2013. 113(24): p. 244905.
78. 張立德、牟季美, 納米材料和納米結構. 應用物理學叢書. 2001, 北京: 科學出版社. p. 114.
79. Tahir, D. and S. Tougaard, Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy. J Phys Condens Matter, 2012. 24(17): p. 175002.
80. Hao, Y. and H. Gong, The Influence of In/Cu Ratio on Electrical Properties of CuO:In Thin Films Prepared by Plasma-Enhanced CVD. Chemical Vapor Deposition, 2008. 14(1-2): p. 9-13.
81. Cao, M., C. Hu, Y. Wang, Y. Guo, C. Guo, and E. Wang, A controllable synthetic route to Cu, Cu2O, and CuO nanotubes and nanorodsElectronic supplementary information (ESI) available: EDS patterns of nanotubes and SEM images of nanorods. Chemical Communications, 2003(15): p. 1884.
82. Jiang, X., T. Herricks, and Y. Xia, CuO Nanowires Can Be Synthesized by Heating Copper Substrates in Air. Nano Letters, 2002. 2(12): p. 1333-1338.
83. Zhang, Z., R. Dua, L. Zhang, H. Zhu, H. Zhang, and P. Wang, Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS Nano, 2013. 7(2): p. 1709-17.
84. Huang, Q., F. Kang, H. Liu, Q. Li, and X. Xiao, Highly aligned Cu2O/CuO/TiO2core/shell nanowire arrays as photocathodes for water photoelectrolysis. J. Mater. Chem. A, 2013. 1(7): p. 2418-2425.
85. Kargar, A., Y. Jing, S.J. Kim, C.T. Riley, X. Pan, and D. Wang, ZnO/CuO heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano, 2013. 7(12): p. 11112-20.
86. Takeno, N., Intercomparison of thermodynamic databases: Atlas of Eh-pH diagrams. Geological Survey of Japan Open File Report. Vol. 419. 2005: National Institute of Advanced Industrial Science and Technology Research Center for Deep Geological Environments.
87. Carl, R.N. HyperPhysics. 2008; Available from: http://hyperphysics.phy-astr.gsu.edu/HBASE/hph.html.
88. Ratner, B.D. and D.G. Castner, Electron Spectroscopy for Chemical Analysis, in Surface Analysis – The Principal Techniques. 2009, John Wiley & Sons, Ltd. p. 47-112.
89. Montaser, A. and D.W. Golightly, Inductively Coupled Plasmas in Analytical Atomic Spectrometry. 1992, New York: VCH Publishers, Inc.
90. Shunko, E.V., D.E. Stevenson, and V.S. Belkin, Inductively Coupling Plasma Reactor With Plasma Electron Energy Controllable in the Range From ~6 to ~100 eV. IEEE Transactions on Plasma Science, 2014. 42(3): p. 774-785.
91. Boumans, P.W., Theory of Spectrochemical Excitation. 2012: Springer Science & Business Media. p. 384.
92. Tauc, J., R. Grigorovici, and A. Vancu, Optical Properties and Electronic Structure of Amorphous Germanium. physica status solidi (b), 1966. 15(2): p. 627-637.
93. Sands, R.H., Paramagnetic resonance absorption in glass. Phys. Rev., 1955. 99: p. 1222-1226.
94. 王曉春、張希艷, 材料現代分析與測試技術. 2009, 北京: 國防工業出版社. p. 82.
95. Courtney, A. Advanced Inorganic Chemistry. 2012; Available from: http://www.wou.edu/las/physci/ch412/pourbaix.htm.
96. Nakaoka, K., J. Ueyama, and K. Ogura, Photoelectrochemical Behavior of Electrodeposited CuO and Cu2O Thin Films on Conducting Substrates. Journal of The Electrochemical Society, 2004. 151(10): p. C661.
97. Yang, Z., J. Xu, W. Zhang, A. Liu, and S. Tang, Controlled synthesis of CuO nanostructures by a simple solution route. Journal of Solid State Chemistry, 2007. 180(4): p. 1390-1396.
98. Liu, D., W.W. Lei, B. Zou, S.D. Yu, J. Hao, K. Wang, B.B. Liu, Q.L. Cui, and G.T. Zou, High-pressure x-ray diffraction and Raman spectra study of indium oxide. Journal of Applied Physics, 2008. 104(8): p. 083506.
99. Barsoukov, E. and J.R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications. 2nd ed. 2005, New York: John Wiley & Sons, Inc.
100. Koffyberg, F.P., A photoelectrochemical determination of the position of the conduction and valence band edges of p-type CuO. Journal of Applied Physics, 1982. 53(2): p. 1173.
101. Chauhan, D., V.R. Satsangi, S. Dass, and R. Shrivastav, Preparation and Charaterization of Nanostructured CuO thin films for Photoelectrochemical Splitting of Water. Bull. Mater. Sci., 2006. 29(7): p. 709-716.
102. Ito, T., H. Yamaguchi, K. Okabe, and T. Masumi, Single-crystal growth and characterization of Cu2O and CuO. Journal of Materials Science, 1998. 33(14): p. 3555-3566.
103. Li, Z., W. Luo, M. Zhang, J. Feng, and Z. Zou, Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci., 2013. 6(2): p. 347-370.
104. Paracchino, A., V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, Highly active oxide photocathode for photoelectrochemical water reduction. Nat Mater, 2011. 10(6): p. 456-61.

QR CODE