簡易檢索 / 詳目顯示

研究生: 賴昱銓
Yu-Chuan Lai
論文名稱: 具有時變通道狀態與無耐性的低地球軌道衛星系統研究
A Study on the Low Earth Orbit Satellite System with Time-varying Channel States and Impatience
指導教授: 鍾順平
Shun-Ping Chung
口試委員: 王乃堅
Nai-Jian Wang
林永松
Yeong-Sung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 216
中文關鍵詞: 非地面網路時變通道狀態低地球軌道衛星無耐性馬可夫鏈
外文關鍵詞: Non-Terrestrial Networks, time-varying channel states, LEO satellites, impatience, Markov chains
相關次數: 點閱:391下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網和非地面網絡的發展,對高數據傳輸速率和可靠連線的需求顯著增加。低地球軌道衛星星座因其無處不在而被確定用於新的大規模進接網路。在這種情況下,低地球軌道衛星通信將發揮重要作用,為傳統網路無法到達的偏遠地區提供進接和覆蓋。因此,低軌衛星通信可應用於物聯網、遠程醫療、軍事通信、航空等各個領域。儘管是一種可行的替代方案,但這些類型的網路在效能方面仍然受到質疑,尤其是在現實世界通道中的延遲和佇列管理方面。在這些方面,人們提出了關於在衛星網路與地面的聯繫中排隊延誤的新問題。從這個意義上說,現有工作通常忽略了從地面到衛星的真實通道條件下的排隊系統,從而將其分析局限於M/M/1/K系統。在這項研究中,我們使用陸地行動衛星通道模型研究單個衛星到地面鏈路的排隊延遲,其中該通道模型考慮了現實的衛星通道狀態,例如視線 (LoS)、中陰影或深陰影。基於上述機制,我們進一步考慮封包可能具有的屬性,加入了無耐性的特性。此外,我們研究了三種情境:(1)僅有一個衛星節點;(2)考慮兩個衛星節點,其中第一個衛星具有時變的上行鏈路通道狀態,第二個衛星具有時變的下行鏈路通道狀態,且兩者之間為直線傳輸;(3)考慮了一個由三個衛星節點組成的簡化網絡,但只有一個上行鏈路通道和一個下行鏈路通道。首先,我們透過馬可夫鏈推導出所提出模型的狀態平衡方程式。其次,我們使用迭代演算法得出穩態機率分佈和各項效能指標。第三,我們研究了不同參數對於系統有效性的影響。最後,在大部分的研究案例中,解析結果與模擬結果相當接近。


    With the rapid development of Internet of Things (IoT) and Non-Terrestrial Networks (NTN), there has been a significant increase in demand for high data transmission rates and reliable connectivity. Low Earth Orbit (LEO) satellite constellations have emerged as a promising solution for enabling massive access networks due to their wide coverage capabilities. Particularly in remote areas where traditional networks are inaccessible, LEO satellite communications can provide vital access and coverage. As a result, these satellite communication systems find applications in diverse fields such as IoT, telemedicine, military communications, and aerospace. Despite their potential, the performance of such networks, especially in terms of latency and queue management in real-world channel conditions, still pose challenges. One of the key issues is the queuing delays experienced in the satellite network-terrestrial links. Existing studies have predominantly focused on analyzing queuing systems using M/M/1/K models, overlooking the unique characteristics and complexities of real channel conditions encountered in the ground-to-satellite links. In this study, we address these limitations by investigating the queuing delay in a single satellite-to-ground link using a land mobile satellite channel model that considers realistic channel conditions, including line-of-sight (LoS), medium shadowing, and deep shadowing. We extend our analysis to incorporate packet attributes and introduce the concept of impatience. Furthermore, we explore three distinct scenarios to assess the performance of the system: (1) a single satellite node, (2) two satellite nodes with time-varying uplink and downlink channel states, and they are connected via an LoS link, and (3) a simplified network comprising three satellite nodes with a single uplink channel and a single downlink channel. To analyze the proposed model, we derive the state balance equations using a Markov chain approach. We employ an iterative algorithm to compute the steady-state probability distribution and evaluate various performance measures. Additionally, we investigate the impact of different parameters on the system's effectiveness. It is worth noting that the analytical results align closely with the simulated results in the majority of the studied cases, validating the accuracy and reliability of our approach.

    摘要 I Abstract II 誌謝 III Contents IV List of Figures VI 1. Introduction 1 2. System model 3 2.1 Scenario 1 3 2.2 Scenario 2 4 2.3 Scenario 3 4 3. Analytical model 5 3.1 Scenario 1 5 3.1.1 Model diagram 5 3.1.2 State balance equations 6 3.1.3 Iterative algorithm 12 3.1.4 Performance measures 12 3.2 Scenario 2 15 3.2.1 Model diagram 15 3.2.2 State balance equations 16 3.2.3 Iterative algorithm 30 3.2.4 Performance measures 30 3.3 Scenario 3 35 3.3.1 Model diagram 35 3.3.2 State balance equations 36 3.3.3 Iterative algorithm 96 3.3.4 Performance measures 97 4. Simulation model 104 4.1 Scenario 1 104 4.1.1 Main program 104 4.1.2 Arrival subprogram 105 4.1.3 Departure subprogram 105 4.1.4 Channel state change subprogram 105 4.1.5 Impatient subprogram 106 4.1.6 Performance measures 106 4.2 Scenario 2 114 4.2.1 Main program 114 4.2.2 Arrival subprogram 114 4.2.3 Departure subprogram 115 4.2.4 Channel state change subprogram 115 4.2.5 Impatient subprogram 116 4.2.6 Performance measures 116 4.3 Scenario 3 127 4.3.1 Main program 127 4.3.2 Arrival subprogram 127 4.3.3 Departure subprogram 128 4.3.4 Channel state change subprogram 129 4.3.5 Impatient subprogram 129 4.3.6 Performance measures 130 5. Numerical results 141 5.1 Scenario 1 141 5.1.1 Packet arrival rate 142 5.1.2 Packet service rate 149 5.1.3 Packet impatient rate 156 5.2 Scenario 2 163 5.2.1 Packet arrival rate 163 5.2.2 Packet service rate 171 5.2.3 Packet impatient rate 179 5.3 Scenario 3 187 5.3.1 Packet arrival rate 187 5.3.2 Packet service rate 196 5.3.3 Packet impatient rate 205 6. Conclusions 214 References 215

    [1] M. M. Azari, S. Solanki, S. Chatzinotas, O. Kodheli, H. Sallouha, A. Colpaert, J. F. M. Montoya, S. Pollin, A. Haqiqatnejad, A. Mostaani, E. Lagunas, and B. Ottersten, "Evolution of Non-Terrestrial Networks From 5G to 6G: A Survey," IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2633-2672, 2022.
    [2] M. Vaezi, A. Azari, S. R. Khosravirad, M. Shirvanimoghaddam, M. M. Azari, D. Chasaki, and P. Popovski, "Cellular, Wide-Area, and Non-Terrestrial IoT: A Survey on 5G Advances and the Road Toward 6G," IEEE Communications Surveys & Tutorials, vol. 24, no. 2, pp. 1117-1174, 2022.
    [3] F. Rinaldi, H. -L. Maattanen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. Koucheryavy, and G. Araniti, "Non-Terrestrial Networks in 5G & Beyond: A Survey," IEEE Access, vol. 8, pp. 165178-165200, 2020.
    [4] S. Chen, S. Sun and S. Kang, "System Integration of Terrestrial Mobile Communication and Satellite Communication —the Trends, Challenges and Key Technologies in B5G and 6G," China Communications, vol. 17, no. 12, pp. 156-171, 2020.
    [5] V. P. Kafle, M. Sekiguchi, H. Asaeda, and H. Harai, "Integrated Network Control Architecture for Terrestrial and Non-Terrestrial Network Convergence In Beyond 5G Systems," 2022 ITU Kaleidoscope- Extended reality – How to boost quality of experience and interoperability, pp. 1-9, 2022.
    [6] F. P. Fontan, M. Vazquez-Castro, C. E. Cabado, J. P. Garcia, and E. Kubista, "Statistical Modeling of the LMS Channel," IEEE Transactions on Vehicular Technology, vol. 50, no. 6, pp. 1549-1567, 2001.
    [7] T. Li, H. Zhou, H. Luo, W. Quan, and S. Yu, "Modeling Software Defined Satellite Networks Using Queueing Theory," 2017 IEEE International Conference on Communications (ICC), pp. 1-6, 2017.
    [8] Y. Zhu, L. Qian, L. Ding, F. Yang, C. Zhi, and T. Song, "Software Defined Routing Algorithm in LEO Satellite Networks," 2017 International Conference on Electrical Engineering and Informatics (ICELTICs), pp. 257-262, 2017.
    [9] N. J. H. Marcano, L. Diez, R. A. Calvo, and R. H. Jacobsen, "On the Queuing Delay of Time-Varying Channels in Low Earth Orbit Satellite Constellations," IEEE Access, vol. 9, pp. 87378-87390, 2021.
    [10] N. J. H. Marcano, L. Diez, R. Agüero, and R. H. Jacobsen, "Finite Buffer Queuing Delay Performance in the Low Earth Orbit Land Mobile Satellite Channel," 2022 IEEE Wireless Communications and Networking Conference (WCNC), pp. 132-137, 2022.
    [11] H. Takagi, "Waiting Time in the M/M/m/(m + c) Queue with Impatient Customers," International Journal of Pure and Applied Mathematics, vol. 90, no. 4, pp. 519-559, 2014.
    [12] M. Aoun and A. Argyriou, "Queueing Model and Optimization of Packet Dropping in Real-Time Wireless Sensor Networks," 2012 IEEE Global Communications Conference (GLOBECOM), pp. 1687-1691, 2012.

    無法下載圖示 全文公開日期 2025/07/28 (校內網路)
    全文公開日期 2025/07/28 (校外網路)
    全文公開日期 2025/07/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE