簡易檢索 / 詳目顯示

研究生: 鍾秉家
Bing-Jia Zhong
論文名稱: 使用高阻抗表面減少帶線跨槽產生之雜訊
Noise Suppression for Moat-crossing Stripline by High Impedance Surface
指導教授: 林丁丙
Ding-Bing Lin
口試委員: 吳宗霖
Tzong-Lin Wu
曾昭雄
Chao-Hsiung Tseng
黃冠翔
Nick K. H. Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 77
中文關鍵詞: 串音雜訊平行板模態帶線週期性結構訊號完整性
外文關鍵詞: crosstalk, parallel plate mode, stripline, periodic structure, signal integrity
相關次數: 點閱:202下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究提供了一個利用週期性結構來減少訊號跨槽所產生的雜訊。平行板模態是帶線的寄生模態,它會被不連續結構激發,再和原本來自鄰近訊號線的串音雜訊疊加,使訊號完整性惡化。本論文的目標為降低平行板模態,進而提升訊號完整性。提出的想法為使用高阻抗表面來製造平行板模態的禁帶,抑制訊號跨槽產生的雜訊。


    This thesis offers an application of corrugated surface with metal protrusions to suppress parallel plate mode induced by stripline crossing moat on reference plane. Parallel plate mode is the parasitic mode in stripline, excited by discontinuities or different dielectric, and so on. It would bring about another noise to adjacent traces. The total noise on quiet line is the combination of inherent crosstalk and parallel plate mode, this thesis focus on improving parallel plate mode. In order to decline pp-mode, high impedance surface is used in the circuit structure. Adding several metal protrusions on the top reference plane of stripline could make the surface impedance bigger at certain frequency bands, which means the stopband of parallel plate mode. Similarly, it could decrease the peak-to-peak value of noise in time domain. This study provides an idea about periodic structure to decline the noise from trace over moat and enhance the signal integrity on the transmission lines.

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Discontinuity and crosstalk in transmission line . . . . . . 1 1.2 Parallel plate mode from stripline crossing moat . . . . . . 5 2 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 Factors in crosstalk . . . . . . . . . . . . . . . . . . . . . 13 2.2 Inductively and capacitively coupling . . . . . . . . . . . 14 2.3 Crosstalk timing . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Near and far end crosstalk . . . . . . . . . . . . . . . . . 19 3 Periodic structure and high impedance surface . . . . . . . . . . 25 3.1 Periodic structure . . . . . . . . . . . . . . . . . . . . . . 25 3.2 Surface wave . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 Dielectric interface . . . . . . . . . . . . . . . . . 29 3.2.2 Metal surface . . . . . . . . . . . . . . . . . . . . 33 3.2.3 Impedance surface . . . . . . . . . . . . . . . . . 36 3.3 High impedance surface . . . . . . . . . . . . . . . . . . 39 4 High impedance surface to suppress parallel plate mode in moatcrossing stripline . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1 Metal protrusions of corrugated surface implement in stripline 42 4.2 Dispersion diagram of metal protrusions implemented in stripline . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Mushroom structure for parallel plate mode suppression . . 52 4.4 Noises from crosstalk and crossing moat mitigation by high impedance surface in stripline . . . . . . . . . . . . . . . 58 5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 63 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    [1] S. H. Hall, G. W. Hall, J. A. McCall, et al., High-speed digital system design: a handbook of interconnect
    theory and design practices. Wiley New York, 2000.
    [2] H.-J. Liaw and H. Merkelo, “Signal integrity issues at split ground and power planes,” in 1996 Proceedings
    46th Electronic Components and Technology Conference, pp. 752–755, IEEE, 1996.
    [3] J. Kim, H. Lee, and J. Kim, “Effects on signal integrity and radiated emission by split reference plane
    on high-speed multilayer printed circuit boards,” IEEE Transactions on Advanced Packaging, vol. 28,
    no. 4, pp. 724–735, 2005.
    [4] H.-H. Chuang, C.-C. Chou, Y.-J. Chang, and T.-L. Wu, “A branched reflector technique to reduce
    crosstalk between slot-crossing signal lines,” IEEE Microwave and Wireless Components Letters,
    vol. 22, no. 7, pp. 342–344, 2012.
    [5] G.-H. Shiue and R.-B. Wu, “Reduction in reflections and ground bounce for signal line over slotted
    power plane using differential coupled microstrip lines,” IEEE Transactions on advanced packaging,
    vol. 32, no. 3, pp. 581–588, 2009.
    [6] H. W. Ott, Electromagnetic compatibility engineering. John Wiley & Sons, 2011.
    [7] J. He, S. Yong, Z. Kiguradze, A. Chada, B. Mutnury, and J. Drewniak, “The effect of the parallel-plate
    mode on striplines in inhomogeneous dielectric media,” in 2020 IEEE International Symposium on
    Electromagnetic Compatibility & Signal/Power Integrity (EMCSI), pp. 352–356, IEEE, 2020.
    [8] C. Schuster and W. Fichtner, “Parasitic modes on printed circuit boards and their effects on emc and
    signal integrity,” IEEE transactions on electromagnetic compatibility, vol. 43, no. 4, pp. 416–425,
    2001.
    [9] R. Rimolo-Donadio, J. Supper, T.-M. Winkel, H. Harrer, and C. Schuster, “Analysis and mitigation of
    parasitic mode conversion for microstrip to stripline transitions,” IEEE transactions on electromagnetic
    compatibility, vol. 54, no. 2, pp. 495–498, 2012.
    [10] D. F. Sievenpiper, High-impedance electromagnetic surfaces. University of California, Los Angeles,
    1999.
    [11] D. M. Pozar, Microwave engineering. John wiley & sons, 2011.
    [12] S. Zhu and R. Langley, “Dual-band wearable textile antenna on an ebg substrate,” IEEE Transactions
    on Antennas and Propagation, vol. 57, no. 4, pp. 926–935, 2009.
    [13] F.-R. Yang, K.-P. Ma, Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (uc-pbg) structure
    and its applications for microwave circuit,” IEEE Transactions on Microwave Theory and Techniques,
    vol. 47, no. 8, pp. 1509–1514, 1999.
    64
    [14] E. Pucci, E. Rajo-Iglesias, and P.-S. Kildal, “New microstrip gap waveguide on mushroom-type ebg for
    packaging of microwave components,” IEEE Microwave and Wireless Components Letters, vol. 22,
    no. 3, pp. 129–131, 2012.
    [15] M.-S. Zhang, Y.-S. Li, C. Jia, and L.-P. Li, “A power plane with wideband ssn suppression using
    a multi-via electromagnetic bandgap structure,” IEEE Microwave and Wireless Components Letters,
    vol. 17, no. 4, pp. 307–309, 2007.
    [16] H.-R. Zhu and J.-F. Mao, “Localized planar ebg structure of csrr for ultrawideband ssn mitigation and
    signal integrity improvement in mixed-signal systems,” IEEE Transactions on Components, Packaging
    and Manufacturing Technology, vol. 3, no. 12, pp. 2092–2100, 2013.
    [17] E. Bogatin, Signal and power integrity–simplified. Pearson Education, 2010.
    [18] R. Collin, “Field theory of guided waves, 1991.”
    [19] E. Rajo-Iglesias, M. Ferrando-Rocher, and A. U. Zaman, “Gap waveguide technology for millimeterwave
    antenna systems,” IEEE Communications Magazine, vol. 56, no. 7, pp. 14–20, 2018.
    [20] P.-S. Kildal, E. Alfonso, A. Valero-Nogueira, and E. Rajo-Iglesias, “Local metamaterial-based waveguides
    in gaps between parallel metal plates,” IEEE Antennas and Wireless Propagation Letters, vol. 8,
    pp. 84–87, 2009.
    [21] D. Sievenpiper, L. Zhang, R. Broas, N. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic
    surfaces with a forbidden frequency band,” IEEE Transactions on Microwave Theory and
    Techniques, vol. 47, no. 11, pp. 2059–2074, 1999.
    [22] A. Orlandi, B. Archambeault, F. De Paulis, and S. Connor, Electromagnetic Bandgap (EBG) Structures:
    Common Mode Filters for High Speed Digital Systems. John Wiley & Sons, 2017.
    [23] F. Yang and Y. Rahmat-Samii, Electromagnetic band gap structures in antenna engineering. Cambridge
    university press Cambridge, UK, 2009.

    無法下載圖示 全文公開日期 2026/08/09 (校內網路)
    全文公開日期 2026/08/09 (校外網路)
    全文公開日期 2026/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE