簡易檢索 / 詳目顯示

研究生: 林承祥
Cheng-Xiang Lin
論文名稱: Fe-34Ni-4.5Al-1.1C合金之相變化研究
The study of phase transformations in an Fe-34Ni-4.5Al-1.1C alloy
指導教授: 鄭偉鈞
Wei-Chun Cheng
口試委員: 王朝正
Chaur-Jeng Wang
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 89
中文關鍵詞: 鐵鎳鋁碳合金spinodal相分離有序化相變化析出型相變化B2相κ-碳化物層狀反應
外文關鍵詞: Fe-Ni-Al-C alloy, spinodal decomposition, ordering transformation, precipitation transformation, B2 phase, κ-carbides, cellular reaction
相關次數: 點閱:197下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文研究四元Fe-34 Ni-4.5 Al-1.1 C (wt.%)合金經1100oC固溶處理與再經低溫恆溫處理後的微觀結構改變與所對應之相變化。固溶處理後,為單一FCC結構之沃斯田體相(γ);將固溶處理後之合金做恆溫處理,合金的相變化如下:於600oC至1000oC的區間,觀察到為B2相析出,合金在固溶處理後得到過飽和固溶體,經恆溫處理,無序的過飽和固溶體在有序化反應之後,形成有序的B2相,隨後經析出相變化生成富鎳鋁之B2析出物,反應式為γ → γ′ + BCC → γ′ + B2。另外500oC到700oC有κ-碳化物之析出,κ-碳化物是由沃斯田體(γ)相由高溫冷卻過程發生spinodal相分離成低溶質(γ′)與高溶質相(γ″),高溶質相(γ″)於更低溫經過有序化反應而轉變為κ-碳化物,接著由析出相變化形成κ-碳化物,其總反應式為:γ → γ′ + γ″ → γ′ + κ-碳化物,並在溫度500oC和550oC時,會在合金晶界處發現有層狀析出物。層狀反應之形式如下:γ → γ′ + γ″ → γ′ + κ-碳化物→ lamellar γ′ + lamellar κ-碳化物。


Phase transformations and microstructure changes of an Fe-34 Ni-4.5 Al-1.1 C (wt.%) alloy have been studied through solution treatment at 1100oC and following annealing at different low temperatures. The results show that the alloy exhibits a single FCC structure austenite phase after solution treatment. We acquired the supersaturated solid solution after solution treatment. Upon annealing the sample at temperature ranging from 600oC to 1000oC, disordered supersaturated solution transformed to ordered B2 phase after ordering reaction. Hence, the B2 phase rich in Ni and Al appeared through precipitation transformation. The reaction can be written as following: γ → γ′ + BCC → γ′ + B2. Upon cooling from high temperature, we observed spinodal decomposition takes place i.e., the austenite phase(γ) transformed into solute-lean austenite (γ′) and solute-enriched austenite (γ″). The solute-enriched austenite phase transformed into κ-carbides from 500oC to 700oC. Hence, κ-carbides appeared through the precipitation transformation. The reaction can be written as follows: γ → γ′ + γ″ → γ′ + κ-carbides. On the other hand, the lamellar form of precipitates could be observed at the grain boundary at 550oC and 500oC. The cellular reaction can be written as follows: γ → γ′ + γ″ → γ′ + κ-carbides→ lamellar γ′ + lamellar κ-carbides.

目 錄 摘 要 I Abstract II 誌 謝 III 表目錄 VI 圖目錄 VII 第一章 前 言 1 第二章 文獻回顧 4 2.1擴散型相變化 4 2.1.1析出型相變化 5 2.1.2 Spinodal相分離 5 2.1.3有序化相變化 7 2.2合金相變化 8 2.2.1 B2相 8 2.2.2 κ-碳化物 9 2.2.3層狀反應 10 第三章 實驗方法 17 3.1合金熔鑄 17 3.2鑄錠加工 19 3.3合金熱處理 20 3.3.1固溶處理 20 3.3.2恆溫處理 20 3.4分析儀器與方法 21 3.4.1洛氏硬度試驗機 21 3.4.2 X光繞射儀 22 3.4.3光學顯微鏡 24 3.4.4場發射掃描式電子顯微鏡 25 3.4.5穿透式電子顯微鏡 26 第四章 結果與討論 35 4.1固溶處理 36 4.2恆溫處理 37 4.2.1 B2相 37 4.2.2 κ-碳化物 40 4.2.3層狀反應 41 第五章 結 論 69 參考文獻 71  

參考文獻
1. Hwang, K.H., Wan, C.M. & Byrne, J.G., Phase transformation in a duplex FeMnAlC alloy, Mater. Sci. Eng. A 132, 161-169 (1991).
2. Cheng, W.C., Formation of a new phase after high-temperature annealing and air cooling of an Fe-Mn-Al alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36, 1737-1743 (2005).
3. Wang, C.J. & Chang, Y.C., NaCl-induced hot corrosion of Fe-Mn-Al-C alloys, Mater. Chem. Phys. 76, 151-161 (2002).
4. Schneider, A., Falat, L., Sauthoff, G. & Frommeyer, G., Microstructures and mechanical properties of Fe3Al-based Fe-Al-C alloys, Intermetallics 13, 1322-1331 (2005).
5. Cheng, W.C. & Lin, H.Y., The precipitation of FCC phase from BCC matrix in an Fe-Mn-Al alloy, Mater. Sci. Eng. A 323, 462-466 (2002).
6. Chen, S.K., Chour, K.W., Lee, W.B., Wan, C.M. & Byrne, J.G., The formation of bcc phase during the solution treatment of duplex FeMnAlC alloys, Mater. Res. Bull. 25, 1115-1119 (1990).
7. Inoue, A., Kojima, Y., Minemura, T. & Masumoto, T., Formation of ductile Ni3Al type compound in Fe-(Ni,Mn)-Al-C system by splat quenching, Trans. Japan Inst. Met. 20, 468-471 (1979).
8. Inoue, A., Kojima, Y., Minemura, T. & Masumoto, T., Microstructure and mechanical properties of ductile Ni3Al-Type compound in Fe-(Ni, Mn)-Al-C systems rapidly quenched from melts, Metall. Trans. A, Phys. Metall. Mater. Sci. 12 A, 1245-1253 (1981).
9. Inoue, A., Arnberg, L., Lehtinen, B. & Masumoto, T., Analytical scanning transmission electron microscopic study on metastable modulated structure in a rapidly quenched Fe-22 Ni-8 Al-2.4 C alloy, Metall. Trans. A 17, 2077-2080 (1986).
10. Chen, H.T., Myers, S.A. & Koch, C.C., Rapidly solidified FeNiAlC alloys: metastable phase formation, Mater. Sci. Eng. 98, 277-280 (1988).
11. Porter, D.A., Easterling, K.E., Sherif, M.Y., Phase Transformations in Metals and Alloys, 3rd edition (2008).
12. Sinning, H.R., Cyclic deformation of spinodally decomposed Cu-4at.% Ti single crystals and polycrystals, Materials Science and Engineering, 55(2), 247-256 (1982).
13. Wagner, R., A studyof spinodal decomposition in Cu-Ti alloys by means of the FIM-atom-probe and FDM, Ultramicroscopy, 4(3), 380 (1979).
14. Livak, R.J. &Thomas, G., Spinodally decomposed Cu-Ni-Fe alloys of asymmetrical compositions, Acta Metall. 19, 497-505 (1971).
15. Cheng, W.C., Cheng, C.Y., Hsu, C.W. & Laughlin, D.E., Phase transformation of the L12 phase to kappa-carbide after spinodal decomposition and ordering in an Fe-C-Mn-Al austenitic steel, Mater. Sci. Eng. A 642, 128-135 (2015).
16. Cahn, J.W., On spinodal decomposition in cubic crystals, Acta Metall. 10, 179-183 (1962).
17. Porter, A.J. & Thompson, A.W., On the mechanism of precipitation strengthening in Cu-z.sbnd; Ti alloys, Scr. Metall. 18, 1185-1188 (1984).
18. Soffa, W.A. & Laughlin, D.E., High-strength age hardening copper-titanium alloys: redivivus, Prog. Mater. Sci. 49, 347-366 (2004).
19. Soffa, W.A. & Laughlin, D.E., Decomposition and ordering processes involving thermodynamically first-order order → disorder transformations, Acta Metall. 37, 3019-3028 (1989).
20. Lee, J.W. & Liu, T.F., Phase transformations in an Fe-8 Al-10 Ni-2 C alloy, Scr. Mater. 44, 257-262 (2001).
21. Hwang, C.N. & Liu, T.F., Grain boundary precipitation reactions in a wrought Fe-8 Al-5 Ni-2 C alloy prepared by the conventional ingot process, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29 A, 693-696 (1998).
22. Athènes, M., Bellon, P., Martin, G. & Haider, F., A monte-carlo study of B2 ordering and precipitation via vacancy mechanism in b.c.c. lattices, Acta Mater. 44, 4739-4748 (1996).
23. Choo, W.K. & Kim, D.G., Lattice modulation and formation of lamellar duplex ferrite/cubic carbide microstructure in rapidly solidified Fe-Ni-Al-C alloys, Metall. Trans. A 18, 759-766 (1987).
24. Myers, S.A. & Koch, C.C., The effect of composition and cooling rate on the structure of rapidly solidified (Fe,Ni)3Al‐C alloys, J. Mater. Res. 4, 44-49 (1989).
25. Lee, J.S. & Choo, W.K., The microstructure of discontinuously precipitated lamellae in an austenitic Fe-42.4 Ni-4.15 Al-0.45 C alloy, Metall. Trans. A 24, 1039-1047 (1993).
26. Sarreal, J.A. & Koch, C.C., Metastable microstructures of rapidly solidified and undercooled FeAlC and (Fe,Ni,Mn)AlC alloys, Mater. Sci. Eng. A 136, 141-149 (1991).
27. Han, K.H. & Choo, W.K., X-ray diffraction study on the structure of rapidly solidified Fe-Al-C and (Fe,Mn,Ni)-Al-C alloys, Metall. Trans. A, Phys. Metall. Mater. Sci. 14 A, 973-975 (1983).
28. Myers, S.A. & Koch, C.C., Electron diffraction structure analysis of rapidly solidified (Fe, Ni)3Al-C alloys, Ultramicroscopy 30, 193-198 (1989).
29. Chuistov, K.V. Copper-titanium solid solutions are a new generation of high-strength age-hardening alloys, Usp. Fiz. Met. 6, 55-103 (2005)
30. Boonyachut, N., The cellular transformation in copper-titanium age-hardening alloys, Ph. D. Thesis (2007) USA.

無法下載圖示 全文公開日期 2026/02/05 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE