簡易檢索 / 詳目顯示

研究生: 葉浚瑋
Chun-Wei Yeh
論文名稱: 密度泛函理論計算於甲烷轉化反應在MIL-53(Al)載體的氧化銅簇之研究
Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al) - A DFT Study
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 林昇佃
Shawn D. Lin
蔡明剛
Ming-Kang Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 133
中文關鍵詞: 甲烷氧化有機金屬框架氧化銅簇微動力學模擬密度泛函理論
外文關鍵詞: CH4 oxidation, Metal-organic framework, copper oxide clusters, Microkinetic simulation, DFT
相關次數: 點閱:273下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

減少溫室氣體排放並將其轉化為高價值燃料和化學品對於緩解氣候變化的影響至關重要。甲烷是一種強效溫室氣體,其全球暖化潛勢遠高於二氧化碳。同時,甲烷也是甲醇和其他化學品生產的寶貴原料。因此,將甲烷催化轉化為甲醇已引起重要的研究關注,成為燃料和大宗化學品來源等。金屬有機骨架材料(MOFs)作為各種化學反應的優良催化劑載體受到廣泛研究,包括甲烷轉化反應。由於其高孔隙度、可調性和空間限制等性能,MOFs提供了獨特的研究方向來設計高效且選擇性的催化劑。近期仿生材料受到顆粒甲烷單加氧酶(pMMO)酶的啟發,利用氧化銅簇作為活性位點,在甲烷轉化中展現了應用潛力。本研究使用密度泛函理論(DFT)計算研究了以MIL-53(Al)作為載體支撐的銅氧化物簇(Cu2On,Cu3On,n=1~3)對甲烷氧化的反應性。首先,我們考慮使用O2和N2O這兩種氧化劑形成氧化銅簇。在甲烷轉化的過程中,Cu2O2/MIL-53(Al)和Cu3O2/MIL-53(Al)催化劑上的初始C-H鍵活化能非常低,表明CumO2(m=2,3)/MIL-53(Al)催化劑可以有效活化甲烷分子,這是甲烷轉化為甲醇反應的速率決定步驟。此外,研究結果表明由於甲醛生成的能障皆極高,所以CumO2(m=2,3)/MIL-53(Al)對甲醇的生成具有高度的選擇性。甲醇在CumO(m=2,3)/MIL-53(Al)催化劑上的脫附能皆小於0.75 eV,表明甲醇可以輕易地從催化劑表面脫附。同時,我們探索了不同的方法來再活化氧化銅簇,並提出了多種反應途徑來完成反應循環。此外,我們進行了電子分析以瞭解氧化銅簇對甲烷活化的影響,並使用微觀動力學模擬來預測室溫下的反應可行性。總的來說,我們的研究結果顯示以MOF載體支撐的銅氧化物簇具有潛力成為高效且可重複使用的甲烷轉化催化劑,並同時具有高甲醇選擇性。


Reducing greenhouse gas emissions and converting them into high-value fuels and chemicals is crucial for mitigating the effects of climate change. Methane is a potent greenhouse gas with a much higher global warming potential than carbon dioxide. It is also a valuable feedstock for the production of methanol and other chemicals. Therefore, the catalytic conversion of methane to methanol has attracted significant research interest as a sustainable source of vehicle fuels and bulk chemicals. Metal-organic frameworks (MOFs) have emerged as promising catalyst supports for various chemical reactions, including methane conversion. They provide a unique platform for designing highly efficient and selective catalysts because of their high porosity, tuneability, and confinement properties. The particulate methane monooxygenase (pMMO) enzyme, which utilizes copper oxide clusters as active sites, has inspired the development of biomimetic materials for methane conversion. In this study, we study the reactivity of copper oxide clusters (Cu2On, Cu3On, n=1~3) supported by the well-known MIL-53(Al) MOF towards methane oxidation using density functional theory (DFT) calculations. Initially, two oxidizing agents, O2 and N2O, are considered to form the copper oxide clusters. In the CH4 conversion, the initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are low, indicating that the CumO2(m=2,3)/MIL-53(Al) catalyst can effectively activate methane molecules, which is a rate-determining step in overall methane conversion to methanol. Furthermore, our results show that CumO2(m=2,3)/MIL-53(Al) has a high selectivity towards methanol formation, with an extremely high energy barrier for formaldehyde formation. The desorption energy of methanol over the CumO (m=2,3)/MIL-53(Al) catalyst is less than 0.75 eV, indicating that methanol can be easily detached from the catalyst surface. We also explore different methods for regenerating the active copper oxide clusters and propose various reaction pathways to complete the reaction cycle. In addition, we performed an electronic analysis to understand the influence of the copper oxide clusters on methane activation and used microkinetic simulations to predict the reaction of viability at room temperature. Overall, our findings show that MOF-supported copper oxide clusters have the potential to be highly efficient and reusable methane conversion catalysts with high methanol selectivity.

Contents Abstract I 摘要 III 致謝 IV Contents V List of Figures VII List of Tables XII Chapter 1. Introduction 1 1.1 Methane oxidation & Methanol economy 1 1.2 MOFs for catalysis 7 1.3 MIL-53(Al) material 8 1.4 Cun cluster 12 1.5 Present study 16 Chapter 2. Theoretical Methodology 17 2.1 Computational detail 17 2.2 Microkinetic simulation 19 2.3 Model 21 2.3.1 MIL-53(Al) 21 2.3.2 Bi-Copper system and Tri-Copper system 24 Chapter 3. Bi-copper oxide system 26 3.1 The formation reaction of Cu2O2/MIL-53(Al) 26 3.1.1 Oxidizing Cu2 with O2 28 3.1.2 Oxidizing Cu2 with N2O 32 3.1.3 Oxidizing Cu2 with H2O2 38 3.2 CH4 conversion over Cu2O2/MIL-53(Al) 44 3.2.1 CH3OH formation 46 3.2.2 CH2O formation 51 3.2.3 The second CH4 conversion over Cu2O/MIL-53(Al) 52 3.3 Catalyst refreshing 57 3.4 Electronic property analysis 65 3.5 Microkinetic simulation 71 3.6 Conclusions 74 Chapter 4. Tri-copper oxide system 76 4.1 The formation of Cu3O2/MIL-53(Al) 76 4.1.1 Oxidizing Cu3 with O2 78 4.1.2 Oxidizing Cu3 with N2O 82 4.2 CH4 conversion over Cu3O2/MIL-53(Al) 89 4.2.1 CH3OH formation 91 4.2.2 CH2O formation 96 4.2.3 The second CH4 conversion over Cu3O/MILL-53(Al) 97 4.3 Catalyst refreshing 102 4.4 Electronic property analysis 109 4.5 Microkinetic simulation 114 4.6 Conclusions 116 Chapter 5. Summary 118 Reference 121 Appendix 130

Reference
1 Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. (United States Environmental Protection Agency, 2023).
2 Chan, S. I., Wang, V. C. C., Chen, P. P. Y. & Yu, S. S. F. Methane oxidation by the copper methane monooxygenase: Before and after the cryogenic electron microscopy structure of particulate methane monooxygenase from Methylococcus capsulatus (Bath). J Chin Chem Soc 69, 1147-1158 (2022).
3 Kakaee, A.-H., Paykani, A. J. R. & Reviews, S. E. Research and development of natural-gas fueled engines in Iran. Renew Sust Energ Rev 26, 805-821 (2013).
4 Zakaria, Z., Kamarudin, S. K. J. R. & Reviews, S. E. Direct conversion technologies of methane to methanol: An overview. Renew Sust Energ Rev 65, 250-261 (2016).
5 Heinzel, A. & Barragan, V. J. J. o. P. s. A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84, 70-74 (1999).
6 Wasmus, S. & Küver, A. J. J. o. E. C. Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461, 14-31 (1999).
7 Kamarudin, S. K., Daud, W. R. W., Ho, S. L. & Hasran, U. A. J. J. o. P. S. Overview on the challenges and developments of micro-direct methanol fuel cells (DMFC). J Power Sources 163, 743-754 (2007).
8 Alias, M., Kamarudin, S., Zainoodin, A. & Masdar, M. J. I. J. o. H. E. Active direct methanol fuel cell: An overview. Int J Hydrogen Energy 45, 19620-19641 (2020).
9 Garratt, D. G. & Kabo, A. J. C. J. o. C. Factors influencing the nature of seleniranium ions in selenenyl chloride additions to alkenes: the use of methanol as solvent. Can J Chem 58, 1030-1041 (1980).
10 Cao, W., Han, H. & Zhang, J. J. F. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84, 347-351 (2005).
11 Sun, Z., Bottari, G. & Barta, K. J. G. C. Supercritical methanol as solvent and carbon source in the catalytic conversion of 1, 2-diaminobenzenes and 2-nitroanilines to benzimidazoles. Green Chem 17, 5172-5181 (2015).
12 Lettinga, G. J. A. v. l. Anaerobic digestion and wastewater treatment systems. Antonie van Leeuwenhoek 67, 3-28 (1995).
13 Koch, G., Siegrist, H. J. W. S. & Technology. Denitrification with methanol in tertiary filtration at wastewater treatment plant Zürich-Werdhoölzli. Water Sci Technol 36, 165-172 (1997).
14 Purtschert, I., Gujer, W. J. W. s. & technology. Population dynamics by methanol addition in denitrifying wastewater treatment plants. Water Sci Technol 39, 43-50 (1999).
15 Kaszycki, P., Tyszka, M., Malec, P. & Kołoczek, H. J. B. Formaldehyde and methanol biodegradation with the methylotrophic yeast Hansenula polymorpha. An application to real wastewater treatment. Biodegradation 12, 169-177 (2001).
16 Sushkevich, V. L., Palagin, D., Ranocchiari, M. & Van Bokhoven, J. A. J. S. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523-527 (2017).
17 Van Hook, J. P. J. C. R. S. & Engineering. Methane-steam reforming. Catal Rev - Sci Eng 21, 1-51 (1980).
18 Xu, J. & Froment, G. F. J. A. j. Methane steam reforming, methanation and water‐gas shift: I. Intrinsic kinetics. AlChE J 35, 88-96 (1989).
19 Meloni, E., Martino, M. & Palma, V. J. C. A short review on Ni based catalysts and related engineering issues for methane steam reforming. Catalysts 10, 352 (2020).
20 Guczi, L. et al. Methane dry reforming with CO2: A study on surface carbon species. Appl Catal A: Gen 375, 236-246 (2010).
21 Usman, M., Daud, W. W., Abbas, H. F. J. R. & Reviews, S. E. Dry reforming of methane: Influence of process parameters—A review. Renew Sust Energ Rev 45, 710-744 (2015).
22 Aramouni, N. A. K. et al. Catalyst design for dry reforming of methane: Analysis review. Renew Sust Energ Rev 82, 2570-2585 (2018).
23 Jang, W.-J., Shim, J.-O., Kim, H.-M., Yoo, S.-Y. & Roh, H.-S. J. C. T. A review on dry reforming of methane in aspect of catalytic properties. Catal Today 324, 15-26 (2019).
24 Vernon, P. D., Green, M. L., Cheetham, A. K. & Ashcroft, A. T. J. C. L. Partial oxidation of methane to synthesis gas. Catal Lett 6, 181-186 (1990).
25 Ashcroft, A., Cheetham, A. K., Green, M. & Vernon, P. J. N. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature 352, 225-226 (1991).
26 York, A. P., Xiao, T. & Green, M. L. J. T. i. C. Brief overview of the partial oxidation of methane to synthesis gas. Top Catal 22, 345-358 (2003).
27 Enger, B. C., Lødeng, R. & Holmen, A. J. A. C. A. G. A review of catalytic partial oxidation of methane to synthesis gas with emphasis on reaction mechanisms over transition metal catalysts. Appl Catal, A 346, 1-27 (2008).
28 Hu, Y., Anpo, M., Wei, C. J. J. o. P. & Chemistry, P. A. Effect of the local structures of V-oxides in MCM-41 on the photocatalytic properties for the partial oxidation of methane to methanol. Journal of Photochemistry and Photobiology A: Chemistry 264, 48-55 (2013).
29 Al‐Shihri, S., Richard, C. J. & Chadwick, D. J. C. Selective oxidation of methane to methanol over ZSM‐5 catalysts in aqueous hydrogen peroxide: Role of formaldehyde. ChemCatChem 9, 1276-1283 (2017).
30 Sun, Z., Wang, C. & Hu, Y. H. J. J. o. M. C. A. Highly selective photocatalytic conversion of methane to liquid oxygenates over silicomolybdic-Acid/TiO2 under mild conditions. J Mater Chem A 9, 1713-1719 (2021).
31 Wachi, K. et al. Selective oxidation of methane into formaldehyde and carbon monoxide catalyzed by supported thermally stable iron oxide subnanoclusters prepared from a diiron-introduced polyoxometalate precursor. Appl Catal B 314, 121420 (2022).
32 Kondratenko, E. V. et al. Developing catalytic materials for the oxidative coupling of methane through statistical analysis of literature data. Catalysis Science & Technology 5, 1668-1677 (2015).
33 Gambo, Y., Jalil, A., Triwahyono, S., Abdulrasheed, A. J. J. o. i. & chemistry, e. Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review. Journal of Industrial and Engineering Chemistry 59, 218-229 (2018).
34 Agarwal, N. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science (Washington, DC, U S) 358, 223-227 (2017).
35 Kim, M. et al. Adsorption and oxidation of CH4 on oxygen-rich IrO2 (110). The Journal of Physical Chemistry C 123, 27603-27614 (2019).
36 Chen, Y. et al. Dual-function reaction center for simultaneous activation of CH4 and O2 via oxygen vacancies during direct selective oxidation of CH4 into CH3OH. ACS Appl Mater Inter 13, 46694-46702 (2021).
37 Su, W.-S., Yeh, C.-H. J. D. & Materials, R. Theoretical investigation of methane oxidation reaction over a novel metal-free catalyst biphenylene network. Diamond Relat Mater 124, 108897 (2022).
38 Chang, C.-C., Liu, C.-Y. & Sun, Y.-C. J. P. C. C. P. Effective methane conversion to methanol on bi-functional graphene-oxide-supported platinum nanoclusters (Pt5)–a DFT study. Phys Chem Chem Phys 22, 4967-4973 (2020).
39 Luo, L. et al. Water enables mild oxidation of methane to methanol on gold single-atom catalysts. Nat Commun 12, 1218 (2021).
40 Li, H. et al. Recent advances in gas storage and separation using metal–organic frameworks. Mater Today 21, 108-121 (2018).
41 Mason, J. A., Veenstra, M. & Long, J. R. J. C. S. Evaluating metal–organic frameworks for natural gas storage. Chem Sci 5, 32-51 (2014).
42 Xu, J., Lawson, T., Fan, H., Su, D. & Wang, G. J. A. E. M. Updated Metal Compounds (MOFs, S, OH, N, C) Used as Cathode Materials for Lithium–Sulfur Batteries. Adv Energy Mater 8, 1702607 (2018).
43 Wang, S. et al. Efficient trapping and catalytic conversion of polysulfides by VS4 nanosites for Li–S batteries. ACS Energy Lett 4, 755-762 (2019).
44 Dolgopolova, E. A., Rice, A. M., Martin, C. R. & Shustova, N. B. J. C. S. R. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev 47, 4710-4728 (2018).
45 Cao, J., Li, X. & Tian, H. J. C. M. C. Metal-organic framework (MOF)-based drug delivery. Curr Med Chem 27, 5949-5969 (2020).
46 Zhu, L., Liu, X.-Q., Jiang, H.-L. & Sun, L.-B. J. C. r. Metal–organic frameworks for heterogeneous basic catalysis. Chem Rev 117, 8129-8176 (2017).
47 Kampouraki, Z.-C. et al. Metal organic frameworks as desulfurization adsorbents of DBT and 4, 6-DMDBT from fuels. Molecules 24, 4525 (2019).
48 Tonigold, M. et al. Heterogeneous Catalytic Oxidation by MFU‐1: A Cobalt (II)‐Containing Metal–Organic Framework. Angew Chem Int Ed 48, 7546-7550 (2009).
49 Rui, K. et al. Hybrid 2D dual‐metal–organic frameworks for enhanced water oxidation catalysis. Adv Funct Mater 28, 1801554 (2018).
50 He, X. et al. Cerium (IV) enhances the catalytic oxidation activity of single-site Cu active sites in MOFs. ACS Catal 10, 7820-7825 (2020).
51 Chen, G.-J. et al. Pd@ Cu (II)-MOF-catalyzed aerobic oxidation of benzylic alcohols in air with high conversion and selectivity. lnorg Chem 55, 3058-3064 (2016).
52 Han, Y. et al. Noble metal (Pt, Au@ Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J Catal 370, 70-78 (2019).
53 Ly, H. G. T. et al. Superactivity of MOF-808 toward Peptide Bond Hydrolysis. J Am Chem Soc 140, 6325-6335 (2018).
54 Manna, K., Ji, P., Greene, F. X. & Lin, W. Metal–Organic Framework Nodes Support Single-Site Magnesium–Alkyl Catalysts for Hydroboration and Hydroamination Reactions. J Am Chem Soc 138, 7488-7491 (2016).
55 Nguyen, H. T., Nguyen, L. H. T., Doan, T. L. H. & Tran, P. H. A mild and efficient method for the synthesis of pyrroles using MIL-53( Al) as a catalyst under solvent- free sonication. Rsc Advances 9, 9093-9098 (2019).
56 Finsy, V. et al. Separation of CO2/CH4 mixtures with the MIL-53(Al) metal–organic framework. Microporous Mesoporous Mater 120, 221-227 (2009).
57 Hamon, L. et al. Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal−Organic Frameworks at Room Temperature. J Am Chem Soc 131, 8775-8777 (2009).
58 Hamon, L. et al. Co-adsorption and Separation of CO2−CH4 Mixtures in the Highly Flexible MIL-53(Cr) MOF. J Am Chem Soc 131, 17490-17499 (2009).
59 Yang, Z. et al. MIL-53(Fe)-graphene nanocomposites: Efficient visible-light photocatalysts for the selective oxidation of alcohols. Appl Catal B 198, 112-123 (2016).
60 Bourrelly, S. et al. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J Am Chem Soc 127, 13519-13521 (2005).
61 Boutin, A. et al. The behavior of flexible MIL-53 (Al) upon CH4 and CO2 adsorption. The Journal of Physical Chemistry C 114, 22237-22244 (2010).
62 Tomar, S. & Singh, V. J. M. T. P. Review on synthesis and application of MIL-53. Materials Today: Proceedings 43, 3291-3296 (2021).
63 Tan, H. et al. Preparation of cerium doped Cu/MIL-53 (Al) catalyst and its catalytic activity in CO oxidation reaction. Journal of Wuhan University of Technology-Mater Sci Ed 32, 23-28 (2017).
64 Tan, Z.-D., Tan, H.-Y., Shi, X.-Y. & Yan, Y.-F. J. I. C. C. Metal–organic framework MIL-53 (Al)-supported copper catalyst for CO catalytic oxidation reaction. Inorg Chem Commun 61, 128-131 (2015).
65 Isaeva, V. et al. Fischer–Tropsch synthesis over MOF-supported cobalt catalysts (Co@ MIL-53 (Al)). Dalton Trans 45, 12006-12014 (2016).
66 Menghuan, C. et al. RuCo bimetallic alloy nanoparticles immobilized on multi-porous MIL-53 (Al) as a highly efficient catalyst for the hydrolytic reaction of ammonia borane. Int J Hydrogen Energy 43, 1439-1450 (2018).
67 Szécsényi, Á., Li, G., Gascon, J. & Pidko, E. A. J. C. s. Unraveling reaction networks behind the catalytic oxidation of methane with H2O2 over a mixed-metal MIL-53 (Al, Fe) MOF catalyst. Chem Sci 9, 6765-6773 (2018).
68 Liu, J.-F., Mu, J.-C., Qin, R.-X. & Ji, S.-F. J. P. S. Pd nanoparticles immobilized on MIL-53 (Al) as highly effective bifunctional catalysts for oxidation of liquid methanol to methyl formate. Pet Sci Technol 16, 901-911 (2019).
69 Chakraborty, A., Acharya, H. J. C., Physicochemical, S. A. & Aspects, E. Magnetically separable Fe3O4 NPs/MIL-53 (Al) nanocomposite catalyst for intrinsic OPD oxidation and colorimetric hydrogen peroxide detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects 624, 126830 (2021).
70 Tian, J. et al. An electrochemical dual-aptamer biosensor based on metal-organic frameworks MIL-53 decorated with Au@ Pt nanoparticles and enzymes for detection of COVID-19 nucleocapsid protein. Electrochim Acta 387, 138553 (2021).
71 Ren, Y. et al. Enhancing the Fenton-like Catalytic Activity of nFe2O3 by MIL-53(Cu) Support: A Mechanistic Investigation. Environmental Science & Technology 54, 5258-5267 (2020).
72 Osadchii, D. Y. et al. Isolated Fe sites in metal organic frameworks catalyze the direct conversion of methane to methanol. ACS Catal 8, 5542-5548 (2018).
73 Ross, M. O. & Rosenzweig, A. C. J. J. J. o. B. I. C. A tale of two methane monooxygenases. JBIC Journal of Biological Inorganic Chemistry 22, 307-319 (2017).
74 Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177-182 (2005).
75 Chen, P. P. Y., Nagababu, P., Yu, S. S. F. & Chan, S. I. Development of the Tricopper Cluster as a Catalyst for the Efficient Conversion of Methane into MeOH. Chemcatchem 6, 429-437 (2014).
76 Yoshizawa, K. & Shiota, Y. Conversion of methane to methanol at the mononuclear and dinuclear copper sites of particulate methane monooxygenase (pMMO): A DFT and QM/MM study. J Am Chem Soc 128, 9873-9881 (2006).
77 Osadchii, D. Y. et al. Isolated Fe Sites in Metal Organic Frameworks Catalyze the Direct Conversion of Methane to Methanol. ACS Catal 8, 5542-5548 (2018).
78 Balasubramanian, R. et al. Oxidation of methane by a biological dicopper centre. Nature 465, 115-119 (2010).
79 Yeh, C. H., Yu, S. S. F., Chan, S. I. & Jiang, J. C. J. C. Quantum chemical studies of methane oxidation to methanol on a biomimetic Tricopper complex: Mechanistic insights. ChemistrySelect 3, 5113-5122 (2018).
80 Li, G. et al. Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. J Catal 338, 305-312 (2016).
81 Mahyuddin, M. H., Staykov, A., Shiota, Y. & Yoshizawa, K. J. A. C. Direct conversion of methane to methanol by metal-exchanged ZSM-5 zeolite (Metal= Fe, Co, Ni, Cu). ACS Catal 6, 8321-8331 (2016).
82 Dinh, K. T. et al. Viewpoint on the partial oxidation of methane to methanol using Cu-and Fe-exchanged zeolites. ACS Catal 8, 8306-8313 (2018).
83 Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J Am Chem Soc 141, 11641-11650 (2019).
84 Koishybay, A. & Shantz, D. F. J. J. o. t. A. C. S. Water is the oxygen source for methanol produced in partial oxidation of methane in a flow reactor over Cu-SSZ-13. J Am Chem Soc 142, 11962-11966 (2020).
85 Newton, M. A., Knorpp, A. J., Sushkevich, V. L., Palagin, D. & Van Bokhoven, J. A. J. C. S. R. Active sites and mechanisms in the direct conversion of methane to methanol using Cu in zeolitic hosts: a critical examination. Chem Soc Rev 49, 1449-1486 (2020).
86 Yu, X., Zhong, L. & Li, S. J. P. C. C. P. Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations. Phys Chem Chem Phys 23, 4963-4974 (2021).
87 Palagin, D., Knorpp, A. J., Pinar, A. B., Ranocchiari, M. & Van Bokhoven, J. A. J. N. Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters? Nanoscale 9, 1144-1153 (2017).
88 Kresse, G. & Hafner, J. J. P. r. B. Ab initio molecular dynamics for liquid metals. PhysRev B 47, 558 (1993).
89 Kresse, G. & Furthmüller, J. J. C. m. s. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6, 15-50 (1996).
90 Kresse, G. & Furthmüller, J. J. P. r. B. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. PhysRev B 54, 11169 (1996).
91 Blöchl, P. E. J. P. r. B. Projector augmented-wave method. PhysRev B 50, 17953 (1994).
92 Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. PhysRev B 59, 1758-1775 (1999).
93 Perdew, J. P., Burke, K. & Ernzerhof, M. J. P. r. l. Generalized gradient approximation made simple. Phys Rev Lett 77, 3865 (1996).
94 Monkhorst, H. J. & Pack, J. D. J. P. r. B. Special points for Brillouin-zone integrations. PhysRev B 13, 5188 (1976).
95 Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27, 1787-1799 (2006).
96 Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132 (2010).
97 Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J Comput Chem 32, 1456-1465 (2011).
98 Antony, A., Hakanoglu, C., Asthagiri, A. & Weaver, J. F. Dispersion-corrected density functional theory calculations of the molecular binding of n-alkanes on Pd(111) and PdO(101). J Chem Phys 136 (2012).
99 Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113, 9901-9904 (2000).
100 Sheppard, D., Terrell, R. & Henkelman, G. Optimization methods for finding minimum energy paths. J Chem Phys 128 (2008).
101 Sheppard, D. & Henkelman, G. Paths to which the Nudged Elastic Band Converges. J Comput Chem 32, 1769-1771 (2011).
102 van Santen, R. A., Markvoort, A. J., Filot, I. A. W., Ghouri, M. M. & Hensen, E. J. M. Mechanism and microkinetics of the Fischer-Tropsch reaction. Phys Chem Chem Phys 15, 17038-17063 (2013).
103 Filot, I. A. W., van Santen, R. A. & Hensen, E. J. M. The Optimally Performing Fischer-Tropsch Catalyst. Angewandte Chemie-International Edition 53, 12746-12750 (2014).
104 Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chemistry-a European Journal 10, 1373-1382 (2004).
105 Fischer, M., Schwegler, J., Paula, C., Schulz, P. S. & Hartmann, M. Direct synthesis of non-breathing MIL-53(Al)(ht) from a terephthalate-based ionic liquid as linker precursor. Dalton Trans 45, 18443-18446 (2016).
106 Desiraju, G. & Steiner, T. The Weak Hydrogen Bond: In Structural Chemistry and Biology. (Oxford University Press, 2001).
107 Gu, Y., Kar, T. & Scheiner, S. Fundamental Properties of the CH···O Interaction:  Is It a True Hydrogen Bond? J Am Chem Soc 121, 9411-9422 (1999).
108 Dannenberg, J. & Rios, R. J. T. J. o. P. C. Theoretical study of the enolic forms of acetylacetone. How strong is the hydrogen bond? The Journal of Physical Chemistry C 98, 6714-6718 (1994).
109 Giribet, C. G. et al. Proximity effects on nuclear spin–spin coupling constants. Part 2.—The electric field effect on 1J(CH) couplings. J Chem Soc, Faraday Trans 92, 3029-3033 (1996).
110 Joseph, J. & Jemmis, E. D. Red-, Blue-, or No-Shift in Hydrogen Bonds:  A Unified Explanation. J Am Chem Soc 129, 4620-4632 (2007).

無法下載圖示 全文公開日期 2025/08/15 (校內網路)
全文公開日期 2025/08/15 (校外網路)
全文公開日期 2025/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE