簡易檢索 / 詳目顯示

研究生: 李孟軒
Meng-Hsuan Lee
論文名稱: 新型含Bezo[c]cinnoline之共軛高分子之合成及其在有機場效電晶體之應用
Synthesis and Characterization of Novel Conjugated Polymers Bearing Benzo[c]cinnoline unit for Organic Field-Effect Transistor Applications
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: 王英靖
Ying-Jing Wang
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 114
中文關鍵詞: 共軛高分子受體材料有機場效電晶體
外文關鍵詞: acceptor, 2,9-difluorobenzo[c]cinnoline
相關次數: 點閱:218下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用 1,4-dibromo-2-nitrobenzene 作為起始物,經過烏耳曼反應、還原
反應、施蒂勒反應及溴化反應製備成新型單體 3,8-bis(5-bromo-4-decylthiophen-2-
yl)benzo[c]cinnoline (M1);並利用 1,4-dibromo-2-fluorobenzene 作為起始物,經過
硝化反應、烏耳曼反應、施蒂勒反應及還原反應後製備成新型含氟化合物 2,9-
difluoro-3,8-bis(4-decylthiophen-2-yl)benzo[c]cinnoline (10)。以新型單體 (M1) 與
2,5-bis(trimethylstannyl)-thieno[3,2-b]thiophene 進行施蒂勒微波聚合反應出新型
共軛高分子 BZCTT。BZCTT 之數目平均分子量為 24.2 KDa。BZCTT 之熱裂
解溫度 Td5 %為 376 ℃,並展現出良好的熱穩定性。BZCTT 薄膜之紫外光可見光
吸收波長為 478 nm,相較於本實驗室已發表之高分子 BZCTVT,BZCTT 展現
出較藍位移之吸收波長以及較大之光學能隙。於循環伏安法測試中,BZCTT 之
測得結果 (HOMO= -5.80 eV, LUMO= -3.43 eV, Egelec = 2.37 eV) 相較於 BZCTVT
(HOMO= -5.63 eV, LUMO= -3.47 eV, Egelec = 2.16 eV) 展現出較低之 HOMO 能階
以及較大之能隙,可推測 BZCTT 有較佳之大氣穩定性。BZCTT 以 BGTC 形式
製成 OFET 元件進行測試, BZCTT 展現出 p 型半導體之性質。經過 150 ℃熱
退火後之電洞遷移率為 6.02 × 10-5,其電流開關比為 106;170 ℃熱退火後之電
洞遷移率為 9.01 × 10-5,其電流開關比則為 107。最後進行低掠角 X 光繞射測試,
BZCTT 薄膜表現出較傾向 edge-on 之排列方式,並可證實經熱退火後可影響其
結晶性。


A novel monomer, 3,8-bis(5-bromo-4-decylthiophen-2-yl)benzo[c]cinnoline
(M1), and a novel compound, 2,9-difluoro-3,8-bis(4-decylthiophen-2-yl)benzo[c]cinnoline (10), were synthesized via several synthetic steps from 1,4-
dibromo-2-nitrobenzene and 1,4-dibromo-2-fluorobenzene. Novel conjugated polymer
BZCTT was prepared from monomer (M1) and 2,5-bis(trimethylstannyl)-thieno[3,2-
b]thiophene by using Stille coupling polymerization in microwave reactor. The
structure of BZCTT was characterized by 1H-NMR. The number molecular weight of
BZCTT, measured in THF was 24.2 KDa, The decomposition temperature at 5 %
weight loss (T d5 %) of BZCTT was 376 ℃, exhibiting outstanding thermal stabilities.
The optical and electrochemical properties of BZCTT were investigated by UV-vis
spectroscopy and cyclic voltammetry. For BZCTT, absorption peak at 478 nm was
observed, showing hypsochromic shift compared with our previous research, BZCTVT.
The cyclic voltammertric studies revealed that BZCTT exhibited almost same LUMO
(-3.43 and -3.47 eV) and lower HOMO (-5.80 and -5.63 eV) energy levels compared
with BZCTVT. A bottom-gate, top-contact OFET based on BZCTT exhibited p-
channel behavior with hole mobilities of 6.02 × 10-5 and 9.01 × 10-5 cm2 V-1 S-1 and on/off ratio greater than 106 after 150 ℃ and 170 ℃ thermal annealing. Grazing incidence X-ray diffraction result suggest that thin film of BZCTT was prefered edge-on orientation and can be significantly influenced through thermal annealing process.

摘要 I Abstract II 目錄 III Figure 索引 IV Table 索引 IX 一、 緒論 1 1.1 前言 1 1.2 共軛高分子 1 1.3 能帶理論 3 1.4 載子傳遞方式 4 1.5 有機場效電晶體 5 1.5.1 有機場效電晶體之簡介與發展歷史 5 1.5.2 有機場效電晶體之元件結構 6 1.5.3 有機場效電晶體之運作原理 8 1.5.4 有機場效電晶體之基本參數與特性 10 1.5.5 有機場效電晶體之分子堆疊情形 12 二、文獻回顧 13 2.1 高分子有機半導體材料簡介 13 2.1.1 施體材料 (Donor) 13 2.1.2 受體材料 (Acceptor) 15 2.2 導入氟原子取代基對共軛高分子之影響 17 2.3 Thieno[3,2-b]thiophene施體結構在共軛高分子上的應用 24 2.4 高載子遷移率之共軛高分子案例 27 2.5 Benzo[c]cinnoline及其衍生物在共軛高分子上的應用 33 2.6 研究動機 40 三、實驗 42 3.1 實驗所需藥品 42 3.2 實驗設備及儀器 43 3.3 單體合成 44 銅粉活化 44 4,4'-dibromo-2,2'-dinitrobiphenyl (2) 44 3,8-dibromobenzo[c]cinnoline (3) 45 3,8-bis(4-decylthiophen-2-yl)benzo[c]cinnoline (5) 45 3,8-bis(5-bromo-4-decylthiophen-2-yl)benzo[c]cinnoline (M1) 46 1,4-dibromo-2-fluoro-5-nitrobenzene (7) 47 4,4'-dibromo-5,5’-difluoro-2,2'-dinitrobiphenyl (8) 48 4,4’-bis(4-decylthiophen-2-yl)- 5,5’-difluoro-2,2’-dinitrobiphenyl (9) 48 2,9-difluoro-3,8-bis(4-decylthiophen-2-yl)benzo[c]cinnoline (10) 49 3.4 高分子聚合 51 四、結果與討論 52 4.1 單體與高分子的合成 52 4.1.1 合成反應 52 4.1.2 單體之合成與性質表徵 55 4.1.3 高分子之合成與性質表徵 71 4.2 高分子分子量與溶解度研究 72 4.3 高分子熱學性質分析 74 4.4 高分子光學性質 77 4.5 高分子電性質分析 80 4.6 高分子構型模擬與能階分佈 83 4.7 元件特性分析 84 4.8 高分子結構分析 88 五、結論 94 參考文獻 95

1. Chiang, C.K., et al., Electrical Conductivity in Doped Polyacetylene. Physical Review Letters, 1977. 39(17): p. 1098-1101.
2. Lam, J.W.Y. and B.Z. Tang, Functional Polyacetylenes. Accounts of Chemical Research, 2005. 38(9): p. 745-754.
3. Genies, E.M. and C. Tsintavis, Redox mechanism and electrochemical behaviour or polyaniline deposits. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985. 195(1): p. 109-128.
4. Heeger, A.J., Semiconducting polymers: the Third Generation. Chem Soc Rev, 2010. 39(7): p. 2354-71.
5. Zhao, G., Y. He, and Y. Li, 6.5% Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization. Adv Mater, 2010. 22(39): p. 4355-8.
6. Sirringhaus, H., et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature, 1999. 401: p. 685.
7. Chang, J.-F., et al., Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chemistry of Materials, 2004. 16(23): p. 4772-4776.
8. Liang, Y. and L. Yu, Development of Semiconducting Polymers for Solar Energy Harvesting. Polymer Reviews, 2010. 50(4): p. 454-473.
9. Sariciftci, N.S., et al., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Science, 1992. 258(5087): p. 1474.
10. Gustafsson, G., et al., Flexible light-emitting diodes made from soluble conducting polymers. Nature, 1992. 357: p. 477.
11. Cheng, Y.-J., S.-H. Yang, and C.-S. Hsu, Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews, 2009. 109(11): p. 5868-5923.
12. van Mullekom, H.A.M., et al., Developments in the chemistry and band gap engineering of donor–acceptor substituted conjugated polymers. Materials Science and Engineering: R: Reports, 2001. 32(1): p. 1-40.
13. Kulkarni, A.P., et al., Electron Transport Materials for Organic Light-Emitting Diodes. Chemistry of Materials, 2004. 16(23): p. 4556-4573.
14. Lo, S.-C. and P.L. Burn, Development of Dendrimers:  Macromolecules for Use in Organic Light-Emitting Diodes and Solar Cells. Chemical Reviews, 2007. 107(4): p. 1097-1116.
15. Wu, H.-C., Synthesis and Optoelectronic Properties of Conjugated Polymers Containing Benzo[c]cinnoline Moieties., in 國立台灣科技大學材料科學與工程研究所. 2015, 6.
16. 曹翔雁, Poly(fluorene vinylene) and Poly(thiophene vinylene) Containing 2,2’-Bis(trifluoromethyl) -4,4’-biphenylene Moiety:Synthesis, Characterization and High Photoluminescence, in 國立台灣科技大學材料科學與工程研究所. 2011.
17. Ebisawa, F., T. Kurokawa, and S. Nara, Electrical properties of polyacetylene/polysiloxane interface. Journal of Applied Physics, 1983. 54(6): p. 3255-3259.
18. Tsumura, A., H. Koezuka, and T. Ando, Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film. Applied Physics Letters, 1986. 49(18): p. 1210-1212.
19. Etienne, P., et al., Molecular beam epitaxial growth of Fe/Cr multilayers on (001)GaAs. Applied Physics Letters, 1988. 53(2): p. 162-164.
20. Jen, K.-Y., G.G. Miller, and R.L. Elsenbaumer, Highly conducting, soluble, and environmentally-stable poly(3-alkylthiophenes). Journal of the Chemical Society, Chemical Communications, 1986(17): p. 1346-1347.
21. Newman, C.R., et al., Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors. Chemistry of Materials, 2004. 16(23): p. 4436-4451.
22. Chiang, C.-J., Novel Conjugated Polymers Containing Non-Coplanar 2,2'-Trifluoromethyl-Substituted Biphenyl Unit and Their Opto-Electronic Applications, in 國立台灣科技大學材料科學與工程研究所. 2016. p. 65-67.
23. Di, C.-a., et al., Interface Engineering: An Effective Approach toward High-Performance Organic Field-Effect Transistors. Accounts of Chemical Research, 2009. 42(10): p. 1573-1583.
24. Wang, C., et al., Semiconducting pi-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem Rev, 2012. 112(4): p. 2208-67.
25. Facchetti, A., Semiconductors for organic transistors. Materials Today, 2007. 10(3): p. 28-37.
26. Bredas, J.L., et al., Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc Natl Acad Sci U S A, 2002. 99(9): p. 5804-9.
27. Cornil, J., et al., Ambipolar Transport in Organic Conjugated Materials. Advanced Materials, 2007. 19(14): p. 1791-1799.
28. da Silva Filho D. A., Kim E.-G., Brédas J.-L., Transport Properties in the Rubrene Crystal: Electronic Coupling and Vibrational Reorganization Energy. Advanced Materials, 2005. 17(8): p. 1072-1076.
29. Shichibu, Y., et al., Large-Scale Synthesis of Thiolated Au25 Clusters via Ligand Exchange Reactions of Phosphine-Stabilized Au11 Clusters. Journal of the American Chemical Society, 2005. 127(39): p. 13464-13465.
30. Bromley, S.T., et al., Importance of Intermolecular Interactions in Assessing Hopping Mobilities in Organic Field Effect Transistors:  Pentacene versus Dithiophene-tetrathiafulvalene. Journal of the American Chemical Society, 2004. 126(21): p. 6544-6545.
31. Brédas, J.-L., et al., Charge-Transfer and Energy-Transfer Processes in π-Conjugated Oligomers and Polymers:  A Molecular Picture. Chemical Reviews, 2004. 104(11): p. 4971-5004.
32. Kim, D.H., et al., Single-Crystal Polythiophene Microwires Grown by Self-Assembly. Advanced Materials, 2006. 18(6): p. 719-723.
33. Dong, H., et al., Nanowire Crystals of a Rigid Rod Conjugated Polymer. Journal of the American Chemical Society, 2009. 131(47): p. 17315-17320.
34. Salleo, A., Charge transport in polymeric transistors. Materials Today, 2007. 10(3): p. 38-45.
35. Guo, X., M. Baumgarten, and K. Müllen, Designing π-conjugated polymers for organic electronics. Progress in Polymer Science, 2013. 38(12): p. 1832-1908.
36. Liang, Y., et al., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. Journal of the American Chemical Society, 2009. 131(22): p. 7792-7799.
37. Lei, T., et al., Ambipolar polymer field-effect transistors based on fluorinated isoindigo: high performance and improved ambient stability. J Am Chem Soc, 2012. 134(49): p. 20025-8.
38. Fei, Z., et al., Influence of Backbone Fluorination in Regioregular Poly(3-alkyl-4-fluoro)thiophenes. J Am Chem Soc, 2015. 137(21): p. 6866-79.
39. Kim, H.G., et al., Synthetic Tailoring of Solid-State Order in Diketopyrrolopyrrole-Based Copolymers via Intramolecular Noncovalent Interactions. Chemistry of Materials, 2015. 27(3): p. 829-838.
40. Boufflet, P., et al., Using Molecular Design to Increase Hole Transport: Backbone Fluorination in the Benchmark Material Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]-thiophene (pBTTT). Advanced Functional Materials, 2015. 25(45): p. 7038-7048.
41. Yum, S., et al., Benzotriazole-Containing Planar Conjugated Polymers with Noncovalent Conformational Locks for Thermally Stable and Efficient Polymer Field-Effect Transistors. Chemistry of Materials, 2014. 26(6): p. 2147-2154.
42. Zhang, A., et al., Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. Macromolecules, 2016. 49(17): p. 6431-6438.
43. Nakano, K., et al., Naphthodithiophene Diimide-Based Copolymers: Ambipolar Semiconductors in Field-Effect Transistors and Electron Acceptors with Near-Infrared Response in Polymer Blend Solar Cells. Macromolecules, 2016. 49(5): p. 1752-1760.
44. Yoon, G.B., et al., Effect of Donor Building Blocks on the Charge-Transfer Characteristics of Diketopyrrolopyrrole-Based Donor–Acceptor-Type Semiconducting Copolymers. ACS Applied Materials & Interfaces, 2017. 9(45): p. 39502-39510.
45. Weller, T., et al., Highly Efficient and Balanced Charge Transport in Thieno[3,4-c]pyrrole-4,6-dione Copolymers: Dramatic Influence of Thieno[3,2-b]thiophene Comonomer on Alignment and Charge Transport. The Journal of Physical Chemistry C, 2018. 122(14): p. 7565-7574.
46. Zhang, X., et al., Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society, 2011. 133(38): p. 15073-15084.
47. Kim, G., et al., A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm(2)/V.s that substantially exceeds benchmark values for amorphous silicon semiconductors. J Am Chem Soc, 2014. 136(26): p. 9477-83.
48. Hui‐Jun, Y., et al., Dramatic Inversion of Charge Polarity in Diketopyrrolopyrrole‐Based Organic Field‐Effect Transistors via a Simple Nitrile Group Substitution. Advanced Materials, 2014. 26(43): p. 7300-7307.
49. Tang, M.L. and Z. Bao, Halogenated Materials as Organic Semiconductors. Chemistry of Materials, 2011. 23(3): p. 446-455.
50. Gao, X. and Y. Hu, Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. Journal of Materials Chemistry C, 2014. 2(17): p. 3099-3117.
51. Usta, H., A. Facchetti, and T.J. Marks, Air-Stable, Solution-Processable n-Channel and Ambipolar Semiconductors for Thin-Film Transistors Based on the Indenofluorenebis(dicyanovinylene) Core. Journal of the American Chemical Society, 2008. 130(27): p. 8580-8581.
52. Hong, W., et al., A conjugated polyazine containing diketopyrrolopyrrole for ambipolar organic thin film transistors. Chemical Communications, 2012. 48(67): p. 8413-8415.
53. Lei, T., J.-Y. Wang, and J. Pei, Design, Synthesis, and Structure–Property Relationships of Isoindigo-Based Conjugated Polymers. Accounts of Chemical Research, 2014. 47(4): p. 1117-1126.
54. Yan, H., et al., A high-mobility electron-transporting polymer for printed transistors. Nature, 2009. 457: p. 679.
55. Shinuk, C., et al., Poly(diketopyrrolopyrrole‐benzothiadiazole) with Ambipolarity Approaching 100% Equivalency. Advanced Functional Materials, 2011. 21(10): p. 1910-1916.
56. Orain, P.-Y., et al., Tuning of electron transfer in diiron azo-bridged complexes relevant to hydrogenases. International Journal of Hydrogen Energy, 2010. 35(19): p. 10797-10802.
57. Shao, X., et al., Chain-Length Effects on Molecular Conformation in and Chirality of Self-Assembled Monolayers of Alkoxylated Benzo[c]cinnoline Derivatives on Highly Oriented Pyrolytic Graphite. The Journal of Physical Chemistry B, 2006. 110(31): p. 15393-15402.
58. Yu, Y., et al., The Reactivity Patterns of Low-Coordinate Iron−Hydride Complexes. Journal of the American Chemical Society, 2008. 130(20): p. 6624-6638.
59. Leonard, N.J., The Chemistry of Cinnolines. Chemical Reviews, 1945. 37(2): p. 269-286.
60. Waluk, J., A. Grabowska, and B. Pakulstroka, Proton addition to excited diazaphenanthrenes topology determined molecular properties. Journal of Luminescence, 1980. 21(3): p. 277-291.
61. Lin, C.T. and J.A. Stikeleather, The effect of molecular distortion in the rates of intersystem crossing S1 Tx S0 processes. Chemical Physics Letters, 1976. 38(3): p. 561-566.
62. Wu, H.-C., J.-C. Chen, and H.-Z. Lin, UV-Irradiation-Enhanced Photoluminescence Emission of Polyfluorenes Containing Heterocyclic Benzo[c]cinnoline Moieties. Macromolecules, 2015. 48(13): p. 4373-4381.
63. Sienkowska, M.J., et al., Liquid crystalline behavior of tetraaryl derivatives of benzo[c]cinnoline, tetraazapyrene, phenanthrene, and pyrene: the effect of heteroatom and substitution pattern on phase stability. Journal of Materials Chemistry, 2007. 17(14): p. 1399-1411.
64. Amorim, C.A., et al., Determination of carrier mobility in MEH-PPV thin-films by stationary and transient current techniques. Journal of Non-Crystalline Solids, 2012. 358(3): p. 484-491.
65. Lee, H., et al., Synthesis of poly(p-phenylene-vinylene) derivatives containing an oxadiazole pendant group and their applications to organic electronic devices. Journal of nanoscience and nanotechnology, 2013. 13(5): p. 3321-3330.
66. Chen, J.-C., et al., Synthesis and properties of air-stable n-channel semiconductors based on MEH-PPV derivatives containing benzo[c]cinnoline moieties. J. Mater. Chem. C, 2014. 2(24): p. 4835-4846.
67. Holt, P.F. and A.N. Hughes, 646. Polycyclic cinnoline derivatives. Part III. The synthesis of the 4,5,9,10-tetra-azapyrene ring system and some non-planar benzo[c]cinnolines. Journal of the Chemical Society (Resumed), 1960(0): p. 3216-3221.
68. Holt, P.F. and R. Oakland, 1170. Polycyclic cinnoline derivatives. Part XIV. 4,5,9-Triazapyrene (quinolino[5,4,3-cde]cinnoline), 4,5,9,10-tetra-azapyrene (cinnolino[5,4,3-cde]cinnoline), and their oxides. Journal of the Chemical Society (Resumed), 1964(0): p. 6090-6094.
69. 簡士玹, Synthesis and Characterization of Novel Heterocyclic Monomer and their Conjugated Polymer for Organic Field-Effect Transistor Applications, in 國立台灣科技大學材料科學與工程研究所. 2017.
70. Bacon, R.G.R. and S.G. Pande, Metal ions and complexes in organic reactions. Part XI. Reactions in pyridine between copper species and aryl halides, in particular between copper(I) oxide and 2-bromonitrobenzene. Journal of the Chemical Society C: Organic, 1970(14): p. 1967-1973.
71. Patrick, D.A., et al., Anti-Pneumocystis carinii pneumonia activity of dicationic carbazoles. European Journal of Medicinal Chemistry, 1997. 32(10): p. 781-793.
72. Tierney, S., M. Heeney, and I. McCulloch, Microwave-assisted synthesis of polythiophenes via the Stille coupling. Synthetic Metals, 2005. 148(2): p. 195-198.
73. Mehta, V.P. and E.V. Van der Eycken, Microwave-assisted C-C bond forming cross-coupling reactions: an overview. Chemical Society Reviews, 2011. 40(10): p. 4925-4936.
74. Zhang, Y., et al., Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chemical Communications, 2011. 47(39): p. 11026-11028.
75. Zeng, Z., et al., Rational design of a difluorobenzo[c]cinnoline-based low-bandgap copolymer for high-performance polymer solar cells. Journal of Materials Chemistry A, 2017. 5(16): p. 7300-7304.
76. Steyrleuthner, R., et al., Aggregation in a High-Mobility n-Type Low-Bandgap Copolymer with Implications on Semicrystalline Morphology. Journal of the American Chemical Society, 2012. 134(44): p. 18303-18317.
77. Schubert, M., et al., Influence of Aggregation on the Performance of All-Polymer Solar Cells Containing Low-Bandgap Naphthalenediimide Copolymers. Advanced Energy Materials, 2012. 2(3): p. 369-380.
78. Jespersen, K.G., et al., The electronic states of polyfluorene copolymers with alternating donor-acceptor units. J Chem Phys, 2004. 121(24): p. 12613-7.
79. Chen, J.-C., et al., Synthesis and properties of air-stable n-channel semiconductors based on MEH-PPV derivatives containing benzo[c]cinnoline moieties. Journal of Materials Chemistry C, 2014. 2(24): p. 4835.
80. Guo, X., et al., Thieno[3,4-c]pyrrole-4,6-dione-Based Donor−Acceptor Conjugated Polymers for Solar Cells. Macromolecules, 2011. 44(2): p. 269-277.
81. Wang, E., et al., An Easily Synthesized Blue Polymer for High‐Performance Polymer Solar Cells. Advanced Materials, 2010. 22(46): p. 5240-5244.
82. Wang, E., et al., Donor Polymers Containing Benzothiadiazole and Four Thiophene Rings in Their Repeating Units with Improved Photovoltaic Performance. Macromolecules, 2009. 42(13): p. 4410-4415.
83. Zhang, M., et al., Synthesis and Photovoltaic Properties of D–A Copolymers Based on Alkyl-Substituted Indacenodithiophene Donor Unit. Chemistry of Materials, 2011. 23(18): p. 4264-4270.
84. Zhou, H., et al., Enhanced Photovoltaic Performance of Low-Bandgap Polymers with Deep LUMO Levels. Angewandte Chemie International Edition, 2010. 49(43): p. 7992-7995.
85. Kang, S.-H., et al., Chlorinated 2,1,3-Benzothiadiazole-Based Polymers for Organic Field-Effect Transistors. Macromolecules, 2017. 50(12): p. 4649-4657.
86. Shin, J., et al., Bis(thienothiophenyl) Diketopyrrolopyrrole-Based Conjugated Polymers with Various Branched Alkyl Side Chains and Their Applications in Thin-Film Transistors and Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015. 7(5): p. 3280-3288.
87. Yu, H., et al., Effect of the alkyl spacer length on the electrical performance of diketopyrrolopyrrole-thiophene vinylene thiophene polymer semiconductors. Journal of Materials Chemistry C, 2015. 3(44): p. 11697-11704.
88. Inaba, K., et al., High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO<sub>3</sub>/ZnO/Sapphire(0001) Double Heteroepitaxial Films. Advances in Materials Physics and Chemistry, 2013. 03(01): p. 72-89.
89. 鄭信民、林麗娟, X光繞射應用簡介. 工業材料雜誌181期, 2002.
90. Lin, H.-Z., Synthesis and Characterization of Benzodithiophene Derived Conjugated Polymers for Solar Cells. 國立台灣科技大學材料科學與工程研究所, 2015.

QR CODE