簡易檢索 / 詳目顯示

研究生: 曾柔方
Rou-Fang Zeng
論文名稱: 含四苯乙烯、氟化四苯乙烯及長碳鏈之3,6-和 2,7-位置咔唑及萘二醯亞胺之共聚物合成與性質鑑定
Synthesis and Characterization of the Alternating Copolymers Containing Triphenylvinylphenyl, Fluorinated Triphenylvinylphenyl and Alkyl Chain Substituted 3,6- or 2,7- Carbazoles and Naphthalene Bisimides
指導教授: 游進陽
Chin-Yang Yu
口試委員: 游進陽
Chin-Yang Yu
王丞浩
Chen-Hao Wang
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 114
中文關鍵詞: 共軛高分子D-A結構萘二醯亞胺咔唑氟化電荷轉移作用有機半導體
外文關鍵詞: conjugated polymer, donor-acceptor, naphthalene bisimides, carbazole, fluorination, charge transfer interaction, organic semiconductor
相關次數: 點閱:251下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用鈴木耦合聚合反應合成一系列具D-A結構之共軛高分子,其中以萘二醯亞胺作為受體,3,6及2,7位置取代之咔唑作為施體,並分別以四苯乙烯、氟化四苯乙烯及長碳鏈取代咔唑單體之9號位置。透過紫外–可見光吸收光譜和循環伏安法測量高分子之光學及電化學性質,藉由高分子之最大吸收波長可觀察到由於分子內電荷轉移作用導致3,6位置之咔唑較2,7位置紅移,氟化四苯乙烯取代之咔唑因為分子內立體阻礙造成最大吸收波長藍移,而D-A結構產生較強的分子內電荷轉移作用,因此高分子之能隙皆低於2.0 eV。利用熱重分析儀和示差掃描熱量儀測量高分子之熱穩定性及結晶性質,因為其多芳香環結構而使高分子均具有良好的熱穩定性。另外,將高分子製作成元件並分析其電學性質,可得其遷移率並推測為p型有機半導體材料。


    A series of new D-A alternating copolymers containing naphthalene bisimides as donor and triphenylvinylphenyl, fluorinated triphenylvinylphenyl or alkyl chain substituted 3,6- or 2,7-carbazoles as acceptor were synthesized by Suzuki-Miyaura polymerization. The optical and electrochemical properties were investigated by UV-Vis absorption spectroscopy and cyclic voltammetry. The 3,6-carbazole-based polymers exhibited red-shifted compared to 2,7-carbazole-based polymers due to ICT interaction, and the fluorinated tetraphenylethene substituted carbazole-base-polymer shows a little blue-shifted absorption wavelength because of the steric hindrance. The band gap of the copolymers is less than 2.0 eV possibly owing to the strong intramolecular charge transfer between carbazoles and naphthalene bisimides. The thermal properties were examined by thermogravimetric analysis and differential scanning calorimeter. The polymers revealed high thermal stability as the structure of the polymer backbone containing large amounts of the fused aromatic rings. In addition, the polymer was made into device and determined the electrical property to obtain the mobility, and inferred to p-type organic semiconductor material.

    Abstract 中文摘要 Acknowledgements Chapter 1. Introduction and Aims 1.1 Conjugated polymers 1.2 Band theory of solids 1.3 Charge transport in conjugated polymers 1.4 Organic semiconductors 1.4.1 Small molecules 1.4.2 Polymers 1.5 Applications of Organic semiconductors 1.5.1 Organic field-effect transistors (OFETs) 1.5.2 Organic photovoltaics (OPVs) 1.6 Aims of project 1.7 References Chapter 2. Results and Discussion 2.1 Synthesis and characterization 2.1.1 Synthesis of monomers 2.1.2 Characterization of monomers 2.1.3 Synthesis of polymers 2.1.4 Characterization of polymers 2.2 Properties of polymers 2.2.1 Optical properties 2.2.2 Electrochemical properties 2.2.3 Thermal properties 2.2.4 Electrical properties 2.3 References Chapter 3. Conclusion Chapter 4. Experimental section 4.1 General procedures (Instrumentation and Materials) 4.2 Synthesis of precursors and monomers 4.3 Synthesis of polymers Appendix 90

    1. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau and A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1099-1101.
    2. T. H. Le, Y. Y. Kim and H. S. Yoon, Polymers 2017, 9, 150-181.
    3. A. J. Heeger, Rev. Mod. Phys., 2001, 73, 681-700.
    4. B. Shan and Q. Miao,Tetrahedron Lett. 2017, 58, 1903-1911.
    5. C. Wang, H. Dong, W. Hu, Y. Liu and D. Zhu, Chem. Rev., 2012, 112, 2208-2267.
    6. H. Dong, C. Wang and W. Hu, Chem. Commun., 2010, 46, 5211-5222.
    7. A. Facchetti, Mater. Today, 2007, 10, 28-37.
    8. J. Cornil, J.-L. Bredas, J. Zaumseil and H. Sirringhaus, Adv. Mater., 2007, 19, 1791-1799.
    9. H. Koezuka, A. Tsumura and T. Ando, Synth. Met., 1987, 18, 699-704.
    10. J. Yang, Z. Zhao, S. Wang, Y. Guo and Y. Liu, Chem. Rev., 2018, 4, 2748-2785.
    11. R. P. Ortiz, A. Facchetti and T. J. Marks, Chem. Rev., 2009, 110, 205-239.
    12. S. Allard, M. Forster, B. Souharce, H. Thiem and U. Scherf, Angew. Chem. Int. Ed., 2008, 47, 4070-4098.
    13. D. Jurchescu, M. Popinciuc, B. J. van Wees and T. T. M. Palstra, Adv. Mater., 2007, 19, 688-692.
    14. H. Li, B. C. K. Tee, J. J. Cha, Y. Cui, J. W. Chung, S. Y. Lee and Z. Bao, J. Am. Chem. Soc., 2012, 134, 2760-2765.
    15. J. I. Park, J. W. Chung, J. Y. Kim, J. Lee, J. Y. Jung, B. Koo, B. L. Lee, S. W. Lee, Y. W. Jin and S. Y. Lee, J. Am. Chem. Soc., 2015, 137, 12175-12178.
    16. A.Y. Amin,A. Khassanov,K. Reuter,T. Meyer-Friedrichsen and M. Halik, J. Am. Chem. Soc. 2012, 134, 16548-16550.
    17. A. N. Sokolov, S. Atahan-Everenk, R. Mondal, H. B. Akkerman, R. S. Sánchez-Carrera, S. Granados-Focil, J. S. Stefan, C.B. Mannsfeld, A. P. Zoombelt, Z. Bao and A. Aspuru-Guzik, Nature Commun., 2011, 2, 437-444.
    18. N. Kurihara, A. Yao, M. Sunagawa, Y. Ikeda, K. Terai, H. Kondo,M. Saito, H. Ikeda and H. Nakamura, Jpn. J. Appl. Phys., 2013, 52, 5-11.
    19. M. L. Tang, J. H. Oh, A. D. Reichardt and Z. Bao, J. Am. Chem. Soc., 2009, 131, 3733-3740.
    20. S. Ando, J.-I. Nishida, E. Fujiwara, H. Tada, Y. Inoue, S. Tokito and Y. Yamashita, Chem. Mater., 2005, 17, 1261-1264.

    無法下載圖示 全文公開日期 2025/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE