簡易檢索 / 詳目顯示

研究生: 粘乃文
Nai-wen Nien
論文名稱: 具功率因數修正之三相/單相矩陣轉換器應用於柯克勞夫-沃爾吞倍壓電路
A Three-Phase to Single-Phase Matrix Converter with Power Factor Correction Applied to Cockcroft-Walton Voltage Multiplier
指導教授: 楊宗銘
Chung-ming Young
口試委員: 邱煌仁
Huang-jen Chiu
林志銘
Chih-ming Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 59
中文關鍵詞: 三相/單相矩陣轉換器Cockcroft-Walton倍壓電路諧波失真漣波控制功率因數
外文關鍵詞: Three-phase to Single -phase Matrix Converter, Cockcroft-Walton voltage multiplier, Harmonic Distortion, Ripple Reduction, Power Factor
相關次數: 點閱:344下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出了一種三相/單相矩陣轉換器基於Cockcroft-Walton倍壓電路,此矩陣轉換器應用於三相交流電源,其目的為將輸入之三相交流電源轉換為具有較高可變頻率的單相交流電源來傳輸到倍壓電路,與常規的Cockcroft-Walton倍壓電路相比,此轉換器具有低電流諧波失真、功率因數可調的交流電源與降低輸出電壓漣波且具可調之直流電壓。本文所推導矩陣轉換器之數學採用MATLAB/Simulink模擬軟體所建立之模擬平台來進行驗證,其中包含了功率級電路及控制方塊圖,藉由模擬結果以證明本論文所提出架構之可行性。


This thesis presents a three-phase to single-phase matrix converter based on Cockcroft-Walton voltage multiplier. The proposed converter transfers the three-phase ac source with line frequency to a single-phase ac source with variable high frequency, then charges the voltage multiplier. Compared with the conventional Cockcroft-Walton voltage multipliers, the proposed converter provides the line current with low harmonic distortion, adjustable power factor at the ac source, ripple reduction and regulated dc output voltage. The mathematical equation for the matrix converter has been verified by using MATLAB/Simulink that includes power stage and control block diagram. Finally, computer simulation results are shown to verify the performance of the proposed three-phase to single-phasematrix converter based on Cockcroft-Walton voltage multiplier.

摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 系統描述與研究方法 2 1.3 內容大綱 3 第二章 倍壓器與功率因數修正 5 2.1 前言 5 2.2 倍壓器基本概述 5 2.3 功率因數的修正器之介紹 7 2.3.1 功率因數的定義 7 2.3.2 三相功因修正器簡介 10 2.3.3 功率因數修正器 12 第三章 系統電路操作 15 3.1 前言 15 3.2 三相/單相矩陣轉換器基於柯克勞夫-沃爾吞倍壓器電路架構 15 3.3 三相/單相矩陣轉換器基於柯克勞夫-沃爾吞倍壓器電路之電路分析 16 第四章 系統數學模型 32 4.1 前言 32 4.2 三相/單相矩陣轉換器之數學模式 32 4.3 柯克勞夫-沃爾吞倍壓器之電路分析 41 第五章 系統模擬 45 5.1 前言 45 5.2 系統模擬 45 第六章 結論與未來方向 54 6.1 結論 54 6.2 未來研究方向 54 參考文獻 56

[1]R. D. Henderson and P. J. Rose, “Harmonics: The effects on power quality and transformers,” IEEE Tran. Ind. Appl., vol. 30, no. 3, pp. 528-532, May/Jun. 1994.
[2]A. P. S. Meliopoulos, Zhang Fan and S. Zelingher, “Power system harmonic state estimation,” IEEE Trans. Power Del., vol. 9, no. 3, pp. 1701-1709, Jul. 1994.
[3]J. W. Kolar and F. C. Zach, “A novel three-phase utility interface minimizing line current harmonics of high-power telecommunaications rectifier modules,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 456-467, Aug. 1997.
[4]盧志華,「數位化新型三相交/直流轉換器開關控制策略之研究」,碩士學位論文,國立台灣科技大學,民國八十九年七月。
[5]V. Vlatkovic and D.orojevic, “Digital-signal-processor-based control of three-phase space vector modulated converters,” IEEE Trans. Ind. Electron., vol. 41, no. 3, pp. 326-332, Jun. 1994.
[6]T. G. Habetler, “A space vector-based rectifier regulator for AC/DC/AC converters,” IEEE Trans. Power Electron., vol. 8, no. 1, pp. 30-36, Jan. 1993.
[7]J. W. Dixon and B. T. Ooi, “Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier,” IEEE Trans. Ind. Electron., vol. 35, no. 4, pp. 508-515, Nov. 1988.
[8]H. Hara, E. Yamamoto, J. K. Kang and T. Kume, “Improvement of output voltage control performance for low-speed operation of matrix converter,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1372-1378, Nov. 2005.
[9]A. Ecklebe and A. Lindemann, “Bi-directional switch commutation for a resonant matrix converter supplying a contactiess energy transmission system,” in Conf. IEEE PCC’07, 2007, pp. 792-799.
[10]P. Wheeler, J. Rodrguez, J. Clare, L. Empringham and A. Weinstein, “Matrix converter: A technology review,” IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 276-287, Apr. 2002.
[11]A. Ecklebe and A. Lindemann, “Investigation of two-step commutated resonant matrix converter supplying a contactiess energy transmission system,” in Conf. IEEE PCC’07, 2007, pp. 792-799.
[12]B. K. Bose, “Power electronics and motion control-technology status and recent trends,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp. 902-909, September/October 1993.
[13]T. M. Jahns, “Motion control with permanent magnet AC machines,” in Proc. IEEE, vol. 82, no. 8, pp. 1241-1252, Aug. 1994.
[14]P. C. Sen, “Electric motor drives and control-past, present, and future,” IEEE Trans. Ind. Electron., vol. 37, no. 6, pp. 562-575, Dec. 1990.
[15]P. Vas, Vector control of AC machines, New York: Clarendon Press, 1990.
[16]B. K. Bose, Power electronics and variable frequency drives- technology and applications, New York: IEEE Press, 1997.
[17]M.Venturini and A. Alesina, “The generalized transformer: a new bidirectional, sinusoidal waveform frequency converter with continuously adjustable input power factor,” in Conf. IEEE PESC’80, 1980, pp.242-252.
[18]J. A. Gow, C. D. Manning, “Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources,” in Proc. IEE-Elect. Power Appl., Vol. 147, no. 1, pp. 15-20, Jan. 2000.
[19]C. Klumpner and F. Blaabjerg, “Experimental evaluation of ride- through capabilities for a matrix converter under short power interruptions,” IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 315–324, Apr. 2002.
[20]M. Yang, S. Kai, Z. Daning, H. Lipei, and K. Matsuse “Application of matrix converter in auxiliary drive system for diesel locomotives,” in Conf. IEEE IAS’05, 2005, pp. 2476–2483.
[21]L. Huber and D. Borojevic, “Space vector modulated three-phase to three-phase matrix converter with input power factor correction,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1234-1245, Dec. 1995.
[22]D. Casadei, G. Serra, and A. Tani, “The use of matrix converter in direct torque control of induction machines,” in proc. IEEE IECON’98, 1998, pp. 744-749.
[23]P. W. Wheeler, J. Rodriguez, J. C. Clare, and L. Empringham, “Matrix converter: A technology review,” IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 276-288, Apr. 2002.
[24]M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, “Analysis of the dynamic and steady-state performance of Cockcroft-Walton cascade rectifier,” IEEE Trans. Power Electron., vol. 7, no. 3, pp. 526-534, Jul. 1992.
[25]M. M. Weiner, “Analysis of Cockcroft-Walton voltage multipliers with an arbitrary number of stages,” Review of Scientific Instruments, vol. 40, no. 2, pp. 330-333, Feb. 1969.
[26]任品瑞,「三相三開關功率因數修正器之設計與實現」,碩士學位論文,中原大學,民國九十五年六月。
[27]E. Ismail and R. W. Erickson, “A single transistor three phase resonant switch for high quality rectification,” in Proc. IEEE PESC’92, 1992, vol. 2, pp. 1341-1351.
[28]M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, Aug. 1997.
[29]L. S. Yang, T. J. Liang and J. F. Chen, “Three phase AC/DC buck converter with bidirectional capability,” in Conf. IEEE Power PESC’06, 2006, pp. 1-5.
[30]H. Sugimura, M. P. Sang, K. S. Kurl, T. Mishima and M. Nakaoka, “High-frequency resonant matrix converter using one-chip reverse blocking IGBT-based bidirectional switches for induction heating,” in Conf. IEEE PESC’08, 2008, pp. 3960-3966.
[31]M. V. M. Villaca and A. J. Perin, “A new bidirectional ZVS switch for direct AC/AC converter applications,” in Conf. IEEE APEC’95, 1995, vol. 2, pp. 977-983.
[32]C. M. Young and M. H. Chen, “A novel single-phase ac to high voltage dc converter based on Cockcroft-Walton cascade rectifier,” in Conf. IEEE PEDS’09, 2009, pp. 822-826, Nov. 2009.

QR CODE