簡易檢索 / 詳目顯示

研究生: 許堡勝
Pao-Sheng Hsu
論文名稱: 應用於冷陰極管羅友換流器之同步脈波寬度調變控制器
A Synchronous PWM Controller for A CCFL Royer Inverter
指導教授: 謝冠群
Guan-Chyun Hsieh
口試委員: 梁從主
Tsorng-Juu Liang
羅有綱
Yu-Kang Lo
潘晴財
Ching-Tsai Pan
陳德玉
Dan Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 79
中文關鍵詞: 冷陰極螢光燈同步脈波寬度調變控制器電流饋入式推挽諧振換流器
外文關鍵詞: Synchronous PWM controller, current fed push-pull resonant inverter, CCFL
相關次數: 點閱:445下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一種應用於自激式羅友換流器(self-oscillation Royer inverter)的同步式脈波寬度調變控制器-時滯調節式脈波寬度調變控制器(Dead-Time-Modulated Pulse-Width-Modulaion controller),該控制器主要是由一單穩態電路(Monostable circuit)及一定電流充電器(Constant-current charger)所構成。其回授控制採變壓器一次側回授控制策略,可消除冷陰極螢光燈之溫度計效應﹔在一完整的開關切換週期內,用來參照產生PWM輸出之鋸齒波形是由一固定時間長度之線性充電時間以及一會隨諧振頻率而變的時滯時間(Dead-time)所組成,本論文所使用的同步策略乃是依據羅友換流器的諧振頻率來調節時滯時間的長短,使開關切換的頻率能夠和諧振頻率達成同步化。
本文除了詳細說明所提之電路架構其各元件值之設計考量及設計步驟外,並實際設計出一部由一次測回授控制之同步式脈波寬度調變羅友換流器,然後進行其特性規格之量測,其實驗結果和理論推導十分相符。


This thesis presents a synchronous PWM controller for self-oscillation Royer inverter. The dead-time-modulated PWM (DTM-PWM) controller is composed of a monostable circuit and a constant-current charger (CCC). The controller use the primary-side feedback control strategy to eliminate the thermometer effect occurring in the cold-cathode fluorescent lamp (CCFL).The referred sawtooth is composed with a constant-period charge time and a variable dead-time. The synchronizing strategy is conducted by modulating the dead-time according to the resonant frequency of the Royer inverter.
The design strategy for building the design example is proposed. A DTM-PWM controlled dimmable Royer inverter with two-CCFL by primary-side control is realized and experimented. The results of analysis and theoretical prediction are verified with experiments.

中文摘要 ....................................................I 英文摘要 ...................................................II 目錄 ......................................................III 圖表索引 ....................................................V 第一章 緒論 .................................................1 1.1 研究背景與動機 ..........................................1 1.2 研究目的 ................................................1 1.3 內容大綱 ................................................2 第二章 冷陰極螢光燈之物理特性與應用 .........................3 2.1 背光光源的種類 ..........................................3 2.2 冷陰極螢光燈之構造與特性 ................................6 2.2.1 螢光燈發光原理 ........................................6 2.2.2 伏安特性曲線 ..........................................8 2.2.3 冷陰極螢光燈之定義與特長 .............................10 2.3 冷陰極螢光燈於液晶顯示之背光光源應用 ...................14 2.3.1 液晶顯示器之背光原理 .................................14 2.3.2 液晶顯示器背光的要求條件 .............................16 第三章 冷陰極螢光燈電子安定器架構 ..........................19 3.1 冷陰極螢光燈電子安定器簡介 .............................19 3.2 自激式Royer換流器原理 ..................................20 3.2.1 電流調節級工作原理 ...................................21 3.2.2 推挽諧振級工作原理 ...................................25 3.2.3 控制與調光 ...........................................31 3.2.3.1 類比調光 ...........................................32 3.2.3.2 低頻調光 ...........................................34 3.2.3.3 一次側充電幫浦式調光 ...............................35 第四章 時滯調節式脈波寬度調變控制器原理 ....................38 4.1 同步信號取樣策略 .......................................39 4.2 時滯調變鋸齒波之產生 ...................................42 4.3 時滯調節式脈波寬度調變控制信號輸出 .....................43 4.4 時滯調節式脈波寬度調變控制器之工作狀態分析 .............44 4.4.1 換流器工作於輕載時之分析 .............................44 4.4.2 換流器工作於重載時之分析 .............................45 第五章 設計考量 ............................................49 5.1 Royer換流器之設計考量 ..................................49 5.1.1 諧振推挽級之設計 .....................................49 5.1.2 電流調節級之設計 .....................................52 5.2 時滯調節式脈波寬度調變控制器設計考量 ...................54 5.2.1 同步信號偵測準位Vref1之選定 ..........................54 5.3.2 時滯時間範圍之選擇 ...................................54 5.3.3 時滯鋸齒波形之設計 ...................................55 第六章系統模擬與實測結果分析 ...............................56 6.1 時滯調節式Royer換流器之規格參數訂定 ....................56 6.1.1 時滯調節式Royer換流器之規格參數訂定 ..................56 6.1.2 Royer換流器之設計實例 ................................57 6.1.2.1 推挽諧振級之設計 ...................................57 6.1.2.2 電流調節級之設計 ...................................59 6.1.3 時滯調節式脈波寬度調變控制器設計實例 .................60 6.1.3.1 同步信號偵測準位Vref1之設定 ........................60 6.1.3.2 時滯時間範圍訂定 ...................................60 6.1.3.3 時滯調節鋸齒波形之設計實例 .........................60 6.2 系統模擬 ...............................................61 6.3 實測結果分析 ...........................................69 6.3.1 Royer換流器波形量測與分析 ............................69 6.3.2 時滯調節式脈波寬度調變控制器波形量測與分析 ...........73 6.3.3 冷陰極燈管波形量測與分析 .............................75 6.3.4 輸出效率整理 .........................................77 第七章 結論與未來研究方向建議 ..............................78 7.1 結論 ...................................................78 7.2 未來研究方向建議 .......................................79 參考文獻 ...................................................80

[1] J. Williams, “Techniques illuminate backlit LCDs with high efficiency,” EDN Mag., pp. 89-94, Jan. 6, 1994.
[2] M. Gulko, and S. B. Yaakov, “Current-sourcing pμsh-pull parallel-resonance inverter(CS-PPRI): theory and application as a discharge lamp driver,” IEEE Trans. on Ind. Electronics, vol. 41, no. 3, pp. 285-291, June 1994.
[3] M. Jordan, and J. A. O’Connor, “Resonant fluorescent lamp converter provides efficient and compact solution,” IEEE-APEC Conference Record, 1993, pp. 424-431.
[4] M. S. Lin, W. J. Ho, F. Y. Shih, D. Y. Chen, and Y. P. Wu, “A cold-cathode fluorescent lamp driver circuit with synchronoμs primary-side dimming control,” IEEE Trans. on Ind. Electronics, vol. 45, no. 2, pp. 249-255, Apr. 1998.
[5] G. C. Hsieh, C. H. Lin, W. H. Liu, and H. I. Hsieh, “Primary-side charge-pump dimming controller for the cold-cathode fluorescent lamp ballast,” Proc. IEEE Region 10 Int’l Conf. Electrical and Electronic Tech., Singapore, pp.717-723 Aug. 2001.
[6] Y. L. Lin, and A. F. Witulski, “Analysis and design of current-fed pμsh-pull resonant inverters-cold cathode fluorescent lamp drivers,” IEEE-IAS Conference Record, 1996, pp. 2149-2152.
[7] J. A. Donahue, P. E. and M. M. Jovanovic, “The LCC inverter as a cold cathode fluorescent lamp driver,” IEEE-PESC Conference Record, 1994, pp. 427-433.
[8] Dimming cold-cathode fluorescent lamp ballast design μsing the UC-3871, Application note U-148, Portable Products(PP),Texas Instruments Incorporated, 1999.
[9] J. Williams, “A Fourth Generation of LCD Backlight Technology,” Linear technology, AN-65, Nov. 1995.
[10] J. A. Sierra, and W. Kaiser, “Comparison of fluorescent lamp stabilization methods in the current-fed pμsh-pull inverter,” IEEE-IAS Conference Record, 1998, pp. 2099-2104.
[11] C. H. Lee, G. B. Joung, and G. H. Cho, “A unity power factor high frequency parallel resonant electronic ballast,” IEEE-IAS Conference Record, 1990, pp. 1149-1156.
[12] J. Williams, “Techniques for 92% efficient LCD illumination,” Linear technology, AN-55, Aug. 1993.
[13] M. Matsuo, T. Suetsugu, S. Mori, and I. Sasase, “Class DE current-source parallel resonant inverter,” IEEE Trans. on Ind. Electronics, vol. 46, no. 2, pp. 242-248, Apr. 1999.
[14] M. K. Nalbant, “A new and improved control technique greatly simplifies the design of ZVS resonant inverters and dc/dc supplies,” IEEE APEC Conference Record, 1995, pp. 694-701.
[15] C. G.. Kim, K. C. Lee, and B. H. Cho, “Driving cold cathode fluorescent lamps in parallel,” Electronics Letters, vol. 41, Issue: 4 , pp. 1-2, Feb. 2005.
[16] N. Mohan, T. M. Undeland, and W. P. Robbin, “Power Electronics: Converter, Application, and design,“ 2nd ed. New York: John Wiley, 1995.
[17] M. K. Nalbant, “A new CCFL inverter circuit far AMLCD panels results in significantly higher efficiency and brightness ,” AMLCDs’95, pp. 133-136.
[18] R. Redl, and K. Arakawa, “A low-cost control IC for single-transistor ZVS cold-cathode fluorescent lamp inverters and DC/DC converters, ” Proc. IEEE APEC Conference, vol. 2, 1997, pp.1042-1049.
[19] M. K. Kazimierczuk, and R. C. Cravens II, “Current-source parallel-resonant DC/AC inverter with transformer,” IEEE Trans. on Power Electronics, vol. 11, no. 2, pp. 275-284, Mar. 1996.
[20] G. C. Hsieh, C. C. Chu, and P. S. Hsu, “Dead-Time-Modulated Synchronoμs PWM Controller for Dimmable CCFL Royer Inverter, ” Proc. IASTED international Conference, Nov. 2004, pp.1042-1049.
[21] Chenyang Liu, F. Teng, C. Hu, and Z. Zhang, “LCLC resonant converter for multiple lamp operation ballast, ” IEEE-APEC Conference Record ,vol. 2, Feb. 2003, pp. 1209-1213.
[22] S. B. Yaakov, and M. M. Peretz, “Modeling and behavioral SPICE simulation of a Self Adjμsting Current-Fed Pμsh-Pull Parallel Resonant Inverters,” IEEE- PESC Conference Record, 2004, pp. 61-67.
[23] C. J. Kom, J. G. Ji, and S. Y. Yoon, “A Study on the Design and Performance of Electronic Ballast for CCFL Dimming Control with Frequency Modulation,” IEEE ICEMS 2003,vol. 1,Nov. 2003, pp. 453-456.

無法下載圖示 全文公開日期 2006/07/21 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE