簡易檢索 / 詳目顯示

研究生: 白凱仁
Kai-Jun Pai
論文名稱: 高壓輸入之多組冷陰極管背光電源研製
Study and Implementation of the Backlight Driver with a High DC Voltage Source for Multiple CCFL's
指導教授: 羅有綱
Yu-Kang Lo
口試委員: 楊宗銘
Chung-Ming Young
劉益華
Yi-Hua Liu
羅有綱
Yu-Kang Lo
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 87
中文關鍵詞: D型並聯諧振換流器液晶顯示器背光模組功率因數修正器冷陰極燈管
外文關鍵詞: cold cathode fluorescent lamp
相關次數: 點閱:215下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一種驅動多組冷陰極燈管之諧振換流器架構,文中採用D型並聯諧振換流器為主電路架構,再藉由單組變壓器即可並聯驅動多組冷陰極燈管,其次,諧振換流器直接利用功率因數修正器之高壓直流輸出為其供應電源,減少了傳統背光模組因採用低壓輸入電源而需另加入降壓轉換器的需求,藉此可大幅降低液晶顯示器構件之成本與配置之體積。本論文除了詳細說明電路架構中各元件值之設計考量,並提出一設計實例,最後以模擬與量測結果驗證所提控制策略之正確性。


    A multi-lamp driver for cold cathode fluorescent lamp (CCFL) with a resonant inverter is proposed in this thesis. Conventionally, a backlight module requires a buck converter to provide a low DC input voltage for driving the inverter. The circuit cost is high and the power transfer efficiency is affected. In this thesis, the 400V DC output voltage of a power factor corrector (PFC) directly powers a Class-D parallel resonant inverter. Also only one transformer is used to drive the multiple lamps. The cost and volume of the backlight module assembly are reduced. Complete analysis and design considerations are discussed in detail in this thesis. Experimental and simulation results are close to the theoretical prediction.

    中文摘要•I 英文摘要 II 誌謝•III 目錄•IV 圖表索引•VI 第一章 緒論••1 1-1 研究動機與目的•1 1-2 內容大綱•2 第二章 液晶顯示器••3 2-1 前言••3 2-2 平面顯示器之簡介•3 2-3 液晶顯示器之構造及動作原理•10 2-4 冷陰極螢光燈管光學原理、構造與特性•••13 2-5 液晶顯示器電力驅動系統••26 第三章 功率因數修正器••28 3-1 前言•••28 3-2 功率因數修正器基本原理•28 3-3 不連續模式功率因數修正器之工作原理與設計準則•29 第四章 冷陰極螢光燈管驅動電路架構••35 4-1 前言••••35 4-2 自激式冷陰極燈管之驅動電路•35 4-3 他激式冷陰極燈管之驅動電路•36 4-4 電流饋入推挽式並聯諧振電路••37 4-5 Class-E諧振電路••38 4-6 全橋諧振電路••39 4-7 壓電變壓器驅動冷陰極燈管••39 第五章 多組冷陰極燈管之驅動控制••43 5-1 前言••43 5-2 多燈管驅動架構之簡介•43 5-3 單組冷陰極燈管驅動原理與狀態分析•45 5-4 多組冷陰極燈管驅動架構與設計準則•52 第六章 設計考量與設計實例••55 6-1 前言••55 6-2 功率因數修正電路之設計考量•55 6-3 D型並聯諧振換流器驅動多燈管之設計考量•57 第七章 電路模擬與量測結果••60 7-1 前言••60 7-2 功率因數修正器輸出電壓之實驗量測•60 7-3 D型並聯諧振換流器之模擬與量測結果•62 第八章 結論與未來研究方向建議•71 8-1 結論•••71 8-2 未來研究方向與建議••73 參考文獻••75

    [1]T. S. Cho, N. O. Kwon, Y. M. Kim, H. S. Kim, S. J. Kim, J. G. Kang, and E. H. Choi, “Capacitive coupled electrodeless discharge backlight driven by square pulses,” IEEE Trans. Plasma Science, vol. 30, no. 5, pp. 2005-2009, 2002.
    [2]W. C. Cheng, and M. Pedram, “Power minimization in a backlit TFT-LCD display by concurrent brightness and contrast scaling,” IEEE Trans. Consumer Electronics, vol. 50, no. 1, pp. 25-32, 2004.
    [3]M. A. D. Costa, M. L. Landerdahl, and R. N. Prado, “Independent multi-lamp electronic ballast,” IEEE-IAS Conference Record, vol. 2, pp. 1065-1070, 2002.
    [4]于本中, “D型調光型螢光燈電子安定器之研製,” 國立台灣科技大學電子工程系碩士學位論文, 民國八十七年
    [5]T. F. Wu, Y. C. Liu, and Y. J. Wu, “High-efficiency low-stress electronic dimming ballast for multiple fluorescent lamps,” IEEE Trans. Power Electronics, vol. 14, no. 1, pp. 160-167, 1999.
    [6]方育斌, “LCD 背光模組之光學最佳化設計,” 國立成功大學工程科學系碩士學位論文, 民國九十三年
    [7]林晉弘, “調光式冷陰極螢光燈電子安定器之初級側充電幫浦式控制器研製,” 國立台灣科技大學電子工程系碩士學位論文, 民國八十九年
    [8]陳耀宗, “超高壓水銀燈電子安定器之設計,” 國立交通大學電機與控制工程學系碩士學位論文, 民國九十一年
    [9]王明山, “數位調光電子安定器之設計與研製,” 中原大學電機工程學系碩士學位論文, 民國九十三年
    [10]莊曜全, “具功因修正之全橋相移零電壓切換直流電源供應器之設計與製作,” 國立台灣科技大學電機工程系碩士學位論文, 民國九十年
    [11]X. Xie, Z. Zhou, J. M. Zhang, Z. Qian, and F. Z. Peng, “Analysis and design of fully DCM clamped-current boost power-factor corrector with universal-input-voltage range,” IEEE-PESC Conference Record, vol. 3, pp. 1115-1119, 2002.
    [12]Applications Handbook, L6561, STMicroelectronics, June 2004.
    [13]Applications Handbook, AN966, STMicroelectronics, Mar. 2003.
    [14]M. Matsuo, T. Suetsugu, S. Mori, and I. Sasase, “Class DE current-source parallel resonant inverter,” IEEE Trans. Ind. Electron., vol. 46, no.2, pp. 242-248, Apr. 1999.
    [15]吳永駿, “電子安定器於低壓氣體放電燈之應用與實務考量,” 國立中正大學電機工程研究所博士學位論文, 民國八十八年
    [16]G. C. Hsieh, C. H. Lin, and H. I. Hsieh, “Primary-side charge-pump dimming controller for the cold-cathode fluorescent lamp ballast,” IEEE-TENCON Conference Record, vol. 2, pp. 717-723, Singapore, Aug. 2001.
    [17]J. A. Sierra, and W. Kaiser, “Comparison of fluorescent lamp stabilization methods in the current-fed push-pull inverter,” IEEE-IAS Conference Record, pp. 2099-2104, 1998.
    [18]R. Redl, and K. Arakawa, “A low-cost control IC for single-transistor ZVS cold-cathode fluorescent lamp inverters and dc/dc converters,” IEEE-APEC Conference Record, vol. 2, pp. 1042-1049, 1997.
    [19]G. H. Kweon, Y. C. Lim, and S. H. Yang, “An analysis of the backlight inverter by topology,” IEEE-ISIE Conference Record, vol. 1, pp. 896-900, 2001.
    [20]S. Kawashima, O. Ohnishi, H. Hakamata, S. Tagami, A. Fukuoka, T. Inoue, and S. Hirose , “Third order longitudinal mode piezoelectric ceramic transformer and its application to high-voltage power inverter,” IEEE Proc. Ultrasonics Symp., vol. 1, pp. 525-530, 1994.
    [21]D. O. Hur, T. K. Kang, C. H. Cho, H. M. Lee, H. K. Ahn, and D. Y. Han, “Design and fabrication of piezoelectric ceramic transformers for the LCD backlight,” IEEE Proc. ICPAD, vol. 2, pp. 843-846, 1997.
    [22]S. J. Choi, K. C. Lee, and Bo H. Cho, “Design of fluorescent lamp ballast with PFC using a power piezoelectric transformer,” IEEE-APEC Conference Record, vol.2, pp. 1135-1139, 1998.
    [23]C. D. Wey, T. L. Jong, and C. T. Pan, “Design and analysis of an SLPT-based CCFL driver,” IEEE Trans. Ind. Electron., vol. 50, pp. 208-217, 2003.
    [24]B. Y. Sam, and Simon Lineykin “Frequency tracking to maximum power of piezoelectric transformer HV converters under load variations,” IEEE-PESC Conference Record, pp. 657-662, 2002.
    [25]C. S. Moo, W. M. Chen, and H. K. Hsieh, “Electronic ballast with piezoelectric transformer for cold cathode fluorescent lamps,” IEE Proc. Electric Power Appli., vol. 150, pp. 278-282, 2003.
    [26]Y. L. Lin, “Controller and Driving Method for Power Circuit, Electrical Circuit for Supplying Energy and Display Device Having the Electrical Circuit,” U.S. Patent 20040178781A1, Sep., 2004.
    [27]Y. H. Tsai, “Multiple CCFL Current Balancing Scheme for Single Controller Topologies,” U.S. Patent6459216B1, Oct. 2002.
    [28]M. Jordan, and J. A. O’Connor, “Resonant fluorescent lamp converter provides efficient and compact solution,” IEEE-APEC Conference Record, pp. 424-431, 1993.

    [29]Product & Applications Handbook, Unitrode, May 1999.
    [30]J. A. Sierra, and W. Kaiser, “Comparison of fluorescent lamp stabilization methods in the current-fed push-pull inverter,” IEEE-IAS Conference Record, pp. 2099-2104, 1998.
    [31]M. Cervi, A. R. Seidel, F. E. Bisogno, and R. N. Prado, “Fluorescent lamp model employing tangent approximation’’, IEEE-PESC Conference Record, vol. 1, pp. 187-191, 2002.
    [32]Q. Zhao, F. C. Lee, and F. S. Tsai, “Voltage and current stress reduction in single-stage power factor correction AC/DC converters with bulk capacitor voltage feedback,” IEEE Trans. Power Electronics, vol. 17, no. 4, pp. 477-484, 2002.
    [33]C. H. Chan, and M. H. Pong, “Interleaved boost power factor corrector operating in discontinuous-inductor-current mode,” IEEE Power Conversion Conference Record, vol. 17, no. 6, pp. 954-962, 2002.
    [34]Applications Handbook, Micro Linear, AB-8, Mar. 1998.
    [35]Product & Applications Handbook, Wellypower, May 2003.

    QR CODE