簡易檢索 / 詳目顯示

研究生: 陳暐
Wei - Chen
論文名稱: 六自由度Wollaston雷射光學尺
Six-degree-of-freedom Wollaston laser encoder
指導教授: 謝宏麟
Hung-lin Hsieh
口試委員: 鄭正元
Jeng-Ywan Jeng
修芳仲
Fang-Jung Shiou
吳乾埼
Chyan-Chyi Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 133
中文關鍵詞: 關鍵字外差光柵Wollaston雷射光學尺共光程位移旋轉角六自由度  
外文關鍵詞: Wollaston
相關次數: 點閱:371下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究主要提出一套創新的Wollaston雷射光學尺量測系統,用以進行六自由度線性位移及旋轉角位移之精準量測。此套光學尺系統主要結合外差干涉術、光柵剪切干涉術、Wollaston prism共光程光路及分光技術等設計概念進行開發,使系統具備高穩定度、高解析度及六自由度的量測能力。
此套雷射光學尺系統主要由一氦氖雷射、電光調變器、擴束鏡組、Wollaston prism、繞射光柵及其他光學元件所組成。首先利用電光調變技術來產生外差光源,同時透過Wollaston prism及光柵的使用來建構出共光程光路架構,使參考光及量測光在空間中行進的路徑皆相同,當系統遭受外界環境擾動影響時,兩道光將感受到相同的擾動訊息,其影響量將於干涉訊號中相互抵消,如此即可有效地降低外界環境擾動對量測結果造成的影響。而後,透過分光技術的使用,建構出三組具備雙自由度(一線性位移及一旋轉角)量測能力的偵測架構,使此套系統擁有六自由度(x, y, z, θx, θy, θz)的精準量測能力。
為了驗證本研究所提出之Wollaston雷射光學尺的可行性及系統性能,本研究使用商用的六軸定位平台及長行程步進平台進行多項實驗,並後將Wollaston雷射光學尺的量測結果與平台內建的電容式位移計與光學編碼器所得到的結果相互比較。由實驗結果證明,此套Wollaston雷射光學尺可在不改變光學架構下,同時提供六自由度線性位移及旋轉角位移的量測訊息,其線性位移與旋轉角位移的量測解析度分別可達2 nm與200 nrad,穩定度於五分鐘內分別為10 nm及1000 nrad,系統量測速度極限可達1100 μm/s,具備優異的量測性能,可廣泛應用於應用於奈米科技、半導體、自動化光學檢測及精密機械等場合中。


In this study, a novel laser encoder for measuring six degree-of-freedom (DOF) displacement and rotation angle information is proposed. This laser encoder is developed by combining heterodyne interferometry, grating shearing interferometry, the design of common-optical-path (COP) configuration by using Wollaston prism, as well as the technique of separating the beams from the same light source. It possesses six DOF measurement ability with high resolution and high stability.
The proposed laser encoder consists of a He-Ne laser, electro-optic modulator, beam expander, Wollaston prism, diffraction grating, as well as other optical components. First, the heterodyne light source is generated via electro-optic modulation, and the COP configuration is constructed by combining the Wollaston prism and grating components. The proposed COP configuration relies on the fact that the propagation paths of the two orthogonally polarized beams (beams s and p) are almost the same and as a consequence undergo similar surrounding disturbances that will be compensated in the interference signal. Therefore, the unanticipated influences from the surrounding disturbances of the measurement result are reduced effectively with COP configuration. Last but not least, the proposed laser encoder has six DOF (x, y, z, θx, θy, θz) precise measurement ability while using a single light source.
In order to verify the performance of our proposed laser encoder, a six DOF precise position stage and a long stroke stepper stage are being used to perform several experiments. The measurement results obtained from our proposed laser encoder are compared with the results acquired from the commercial capacitive senor built in the six DOF precise position stage as well as the linear encoder built in the stepper stage. As can be verified from the results of our experiments, the proposed laser encoder has the ability to precisely measure displacement and rotation angle in six DOF without modifying the optical configuration. The resolutions of displacement and rotation angle are 2 nm and 200 nrad, respectively. The stabilities of displacement and rotation angle are about 10 nm and 1000 nrad over minutes. The measurement speed can achieve 1100 μm/s.

摘要 I Abstract II 致謝 IV 符號說明 V 目錄 X 圖目錄 XIV 表目錄 XVII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 同調干涉術之文獻回顧 2 1.2.2 外差干涉術之文獻回顧 4 1.2.3 光柵干涉術(雷射光學尺)之文獻回顧 6 1.2.4 非共光程光路干涉儀之文獻回顧 10 1.2.5 準共光程光路干涉儀之文獻回顧 14 1.2.6 共光程光路干涉儀之文獻回顧 16 1.2.7 多自由度量測之文獻回顧 19 1.3 研究目的 28 1.4 論文架構 29 第二章 基礎理論 31 2.1 外差調制技術 31 2.1.1 移動(旋轉)光柵法產生外差光源 32 2.1.2 旋轉波片法產生外差光源 34 2.1.3 賽曼雷射 36 2.1.4 聲光調制產生外差光源 37 2.1.5 電光調制產生外差光源 39 2.1.6 波長調制產生外差光源 41 2.2 光柵干涉術(雷射光學尺) 42 2.2.1 都卜勒效應引入相位變化 42 2.2.2 非共光程同調式光柵干涉儀 43 2.2.3 非共光程外差式光柵干涉儀 44 2.2.4 準共光程外差式光柵剪切干涉儀 47 2.3 六自由度雷射光學尺量測技術 49 2.4 外差訊號相位解調 53 2.5 全像光柵自製原理 54 2.5.1 全像光柵週期與光束入射角之關係 55 2.5.2 全像光柵繞射效率與曝光時間之關係 56 2.6 小結 57 第三章 六自由度Wollaston雷射光學尺量測系統 58 3.1 共光程光路架構Wollaston 雷射光學尺之設計原理 58 3.1.1 Wollaston prism光學元件特性 58 3.1.2 Wollaston雷射光學尺之共光程光路架構設計 59 3.2 單自由度Wollaston雷射光學尺 60 3.3 雙自由度Wollaston雷射光學尺 63 3.4 四自由度Wollaston雷射光學尺 66 3.5 六自由度Wollaston雷射光學尺 69 3.6 相位解調系統 74 3.7 全像光柵之製作 75 3.7.1 曝全像光柵之光路架構 75 3.7.2 顯定影流程 77 3.8 本研究所用到之光學元件及實驗儀器 78 3.9 小結 79 第四章 實驗結果與討論 80 4.1 單自由度位移(x)量測實驗 80 4.2 雙自由度旋轉角度(θz)量測實驗 81 4.3 六自由度位移(x, y, z, θx, θy, θz)量測實驗 83 4.3.1 線性位移(x, y, z)量測實驗 83 4.3.2 旋轉角度(θx, θy, θz)量測實驗 86 4.3.3 隨機位移訊號量測實驗 88 4.4 量測系統性能測試與討論 90 4.4.1 解析度量測 90 4.4.2 重複度量測 92 4.4.3 穩定度量測 93 4.4.4 直線度量測 95 4.4.5 量測速度極限 96 4.5 小結 98 第五章 誤差分析 99 5.1 系統誤差 99 5.1.1 光源方位角錯誤所造成之影響 99 5.1.2 檢偏器方位角錯誤所造成之影響 101 5.1.3 檢偏器消光比所造成之影響 102 5.1.4 Wollaston prism消光比所引入之非線性誤差 103 5.1.5 Wollaston prism角度擺放造成之影響 106 5.1.6 Wollaston prism與光柵之極限距離分析 107 5.1.7 光柵週期對光路及系統解析度所造成的影響 108 5.1.8 光柵對位於位移量測系統中引入之誤差 110 5.1.9 光柵對位於旋轉角度量測系統中引入之誤差 112 5.2 隨機誤差 113 5.2.1 環境振動 113 5.2.2 光學元件與夾治具材料熱特性 113 5.2.3 電子雜訊 114 5.3 小結 114 第六章 結論與未來展望 115 6.1 結論 115 6.2 未來展望 116 參考文獻 118 附錄 125

[1] J. F. Doyle, “Experimentally determining the contact force during the transverse impact of an orthotropic plate,” J. Sound Vib., 118, pp.441-448, 1987.
[2] C. J. Li and A. G. Ulsoy, “High-precision measurement of tool-tip displacement using strain gauges in precision flexible line boring,” Mech. Syst. Signal Pr., 13, pp.531-546, 1999.
[3] A. Weckenmann, G. Peggs, and J. Hoffmann, “Probing systems for dimensional micro-and nano-metrology,” Meas. Sci. Technol., 17, pp.504-509, 2006.
[4] M. Kim, W. Moon, E. Yoon, and K. R. Lee, “A new capacitive displacement sensor with high accuracy and long-range,” Sens. Actuator A, 12, pp.135-141, 2006.
[5] A. Mehta, W. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett., 15, pp.1129-1131, 2003.
[6] M. Kim and W. Moon, “A new linear encoder-like capacitive displacement sensor,” Measurement, 39, pp.481-489, 2006.
[7] K. Hane, Y. Uchida, and S. Hattori, “Moiré displacement measurement technique for a linear encoder,” Opt. Laser Technol., 17, pp.89-95, 1985.
[8] A. Kimura, W. Gao, Y. Arai, and Z. Lijiang, “Design and construction of a two-degree-of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng., 34, pp.145-155, 2010.
[9] X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, “Polarization interferometer for measuring small displacement,” IEEE Trans. Instrum. Meas., 50, pp.868-871, 2001.
[10] T. Suzuki and R. Hioki, “Translation of light frequency by a moving Grating,” J. Opt. Soc. Am., 57, p.1551, 1967.
[11] W. H. Stevenson, “Optical frequency shifting by means of a rotating diffraction grating,” Appl. Opt., 9, pp.649-652, 1970.
[12] M. P. Kothiyal and C. Delisle, “Optical frequency shifter for heterodyne interferometry using counterrotating wave plates,” Opt. Lett., 9, pp.319-321, 1984.
[13] Y. Xie and Y. Z. Wu, “Zeeman laser interferometer errors for high-precision measurements,” Appl. Opt., 31, pp.881-884, 1992.
[14] M. M. de Lima, M. Beck, R. Hey, and P. V. Santos, “Compact Mach-Zehnder acousto-optic modulator,” Appl. Phys. Lett., 89, p.121104, 2006.
[15] D. C. Su, M. H. Chiu, and C. D. Chen, “A heterodyne interferometer using an electro-optic modulator for measuring small displacements,” J. Opt., 27, pp.19-23, 1996.
[16] Q. Liu, M. Wang, Y. Tao, J. Chen, H. Hao, and D. Guo, “Implementation of real-time displacement precision measurement technology for the sinusoidal phase-shifting laser self-mixing interferometer,” Proc. SPIE, 9446, p.944607, 2015.
[17] P. Y. Chien, Y. S. Chang, and M. W. Chang, “Distance- and velocity-detection interferometer by using a frequency triangular-modulated laser diode,” Appl. Opt., 16, pp.2853-2855, 1995.
[18] M. Dobosz, “Application of a divergent laser beam in a grating interferometer for high-resolution displacement measurements,” Opt. Eng., 33, pp.897-901, 1994.
[19] S. J. Friedman, B. Barwick, and H. Batelaan, “Focused-laser interferometric position sensor,” Rev. Sci. Instrum., 76, p.123106, 2005.
[20] C. K. Lee, C. C. Wu, S. J. Chen, L. B. Yu, Y. C. Chang, Y. F. Wang, J. Y. Chen, and J. W. J. Wu, “Design and construction of linear laser encoders that possess high tolerance of mechanical runout,” Appl. Opt., 43, pp.5754-5762, 2004.
[21] J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, “Heterodyne interferometer for measurement of in-plane displacement with sub-nanometer resolution,” Proc. SPIE, 6280, p.62800J, 2006.
[22] P. Shi and E. Stijns, “New optical method for measuring small-angle rotations,” Appl. Opt., 27, pp.4342-4346, 1988.
[23] J. Kemp, X. Q. Jiang, Y. N. Ning, A. W. Palmer, and K. T. V. Grasttan, “A displacement measurement system, utilizing a Wollaston interferometer,” Opt. Laser Technol., 30, pp.71-75, 1998.
[24] S. T. Lin and W. J. Syu, “Heterodyne angular interferometer using a square prism,” Opt. Laser Eng., 47, pp.80.83, 2009.
[25] F. Cheng and K. C. Fan, “Linear diffraction grating interferometer with high alignment tolerance and high accuracy,” Appl. Opt., 50, pp.4550-4556, 2011.
[26] G. S. Schajer, Y. Zhang, and S. Melamed, “In-plane ESPI using an achromatic interferometer with low-coherence laser source,” Opt. Laser Eng., 67, pp.116-121, 2015.
[27] H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, “Quasi-common-optical-path heterodyne grating interferometer for displacement measurement,” Meas. Sci. Technol., 21, p.115304, 2010.
[28] J. Y. Lee and M. P. Lu, “Optical heterodyne grating shearing interferometry for long-range positioning applications,” Opt. Commun., 284, pp.857-862, 2011.
[29] C. C. Wu, C. C. Hsu, J. Y. Lee, and Y. Z. Chen, “Heterodyne common-path grating interferometer with Littrow configuration,” Opt. Express, 21, pp.13322-13332, 2013.
[30] X. Wan, D. Li, and S. Zhang, “Quasi-common-path laser feedback interferometry based on frequency shifting and multiplexing,” Opt. Lett., 32, pp.367-369, 2007.
[31] Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett., 30, pp.1488-1490, 2005.
[32] C. C. Wu, Y. Z. Chen, and C. H. Liao, “Common-path laser planar encoder,” Opt. Express, 21, pp.18872-18883, 2013.
[33] H. L. Hsieh, J. Y. Lee, L. Y. Chen, and Y. Yang, “Development of an angular displacement measurement technique through birefringence heterodyne interferometry,” Opt. Express, 24, pp.6802-6813, 2016.
[34] Y. C. Wang, L. H. Shyu, and C. P. Chang, “The comparison of environmental effects on michelson and fabry-Perot interferometers utilized for the displacement measurement,” Sensors, 10, pp.2577-2586, 2010.
[35] H. L. Hsieh, J. C. Chen, G. Lerondel, and J. Y. Lee, “Two-dimensional displacement measurement by quasi-common-optical-path heterodyne grating interferometer,” Opt. Express, 19, pp.9770-9782, 2011.
[36] M. Aketagawa, M. Madden, S. Uesugi, T. Kumagai, Y. Maeda, and E. Okuyama,
“Spindle error motion measurement using concentric circle grating and phase modulation interferometers,” Proc. SPIE, 8563, p.85630C, 2012.
[37] H. L. Huang, C. H. Liu, W. Y. Jywe, M. S. Wang, and T. H. Fang, “Development of a three-degree-of-freedom laser linear encoder for error measurement of a high precision stage,” AIP, 78, p.066103, 2007.
[38] W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann., 56, pp.529-532, 2007.
[39] W. Gao, Y. Saito, H. Muto, Y. Arai, and Y. Shimizu, “A three-axis autocollimator for detection of angular error motions of a precision stage,” CIRP Ann. Manuf. Technol., 60, pp.515-518, 2011.
[40] X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng., 37, pp.771-781, 2013.
[41] H. L. Hsieh and S. W. Pan, “Development of a grating-based interferometer for six-degree-of-freedom displacement and angle measurements,” Opt. Express, 23, pp.2451-2465, 2015.
[42] L. H. Shyu, C. L. Chen, and D. C. Su, “Method for measuring the retardation of a wave plate,” Appl. Opt., 32, pp.4228-4230, 1993.
[43] 李貴宇,「波長調制外差式光柵干涉儀之研究」,國立中央大學,碩士論文,2007。
[44] 王威程,「多自由度波長調制外差光柵干涉儀之開發」,國立台灣科技大學,碩士論文,2014。
[45] K. Tatsuno and Y. Tsunoda, “Diode laser direct modulation heterodyne interferometer,” Appl. Opt., 26, pp.37-40, 1987.
[46] Jesse Zheng, “Analysis of optical frequency-modulated continuous-wave interference,” Appl. Opt., 43, pp.4189-4198, 2004.
[47] 徐堅鏹,「全像光柵製作與應用」,國立台灣科技大學,碩士論文,1993。
[48] C. Lin, S. Yan, Z. Du, C. Wei, and G. Wang, “High-efficiency gold-coated cross-grating for heterodyne grating interferometer with improved signal contrast and optical subdivision,” Opt. Commun., 339, pp.86-93, 2015.
[49] Slavich, holographic material, fine grain emulsions (red & green) (http://www.slavich.com/holo_fg-red-green)
[50] B. J. Chang and C. D. Leonard, “Dichromated gelatin for the fabrication of holographic optical elements,” Appl. Opt., 18, pp.2407-2417, 1979.
[51] 林俊廷,「全像頻譜分光技術之太陽光電效率改善研究」,國立中央大學,碩士論文,2014。
[52] W. Gao, S. Dejima, and S. Kiyono, “A dual-mode surface encoder for position measurement,” Sens. Actuator A, 117, pp.95-102, 2005.
[53] W. Gao, S. W. Kim, H. Bosse, H. Haitjema, Y. L. Chen, X. D. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. Manuf. Technol., 64, pp.773-796, 2015.
[54] 盧洺霈,「反射式準共光程外差光柵干涉儀應用於長行程精密定位技術之研究」,國立中央大學,碩士論文,2009。
[55] 潘思汶,「六自由度準共光程雷射干涉儀之開發」,國立台灣科技大學,碩士論文,2014。
[56] 陳應誠,「電光晶體調制外差式干涉儀與其非線性誤差之消減」,國立清華大學,碩士論文,1994。
[57] W. Hou and G. Wilkening, “Investigation and compensation of the nonlinearity of heterodyne interferometers,” Precis. Eng., 14, pp.91-98, 1992.
[58] Y. GürselProc, “Laser metrology gauges for OSI,” Proc. SPIE, 1947, pp.188-197, 1993.
[59] Y. GürselProc, “Metrology for spatial interferometry,” Proc. SPIE, 2200, pp.27-34, 1994.
[60] 林福正,「正交相位量測干涉儀與其非線性之誤差消減」,國立清華大學,碩士論文,1994。

QR CODE