簡易檢索 / 詳目顯示

研究生: 許哲銘
Zhe-Ming Hsu
論文名稱: 利用微波電漿製備銅氧化物電極應用於生物感測
Preparation of Copper Oxide Electrodes by Microwave Plasma Treatments for Biosensing Applications
指導教授: 王孟菊
Meng-Jiy Wang
口試委員: 莊怡哲
Yi-Je Juang
施志欣
Chih-Hsin Shih
張厚謙
Hou-Chien Chang
何郡軒
Jinn-Hsuan Ho
林文賓
Wen-Pin Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 175
中文關鍵詞: 非酵素型生物感測器微波電漿系統銅氧化物水膠
外文關鍵詞: Non-enzymatic biosensor, Microwave plasma, Copper oxide, Hydrogel
相關次數: 點閱:265下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了製備出高靈敏度與低偵測極限的非酵素型生物感測器,本研究利用微波電漿系統,以快速且無需要溶劑的方式,製備銅氧化物電極,以感測不同的活性物質。在應用方面,將銅氧化物電極結合 poly(HEMA-co-SBMA) 水膠,探討應用在可穿戴式感測器的可行性。
本研究分為三個部分,第一部分探討銅氧化物電極性質,由掃描式電子顯微鏡 (SEM) 觀察銅氧化物的表面型態,X 光繞射儀 (XRD) 與化學分析電子能譜儀 (ESCA) 確認銅氧化物的組成,三用電表及循環伏安法分析導電度與電活性面積。第二部分為銅氧化物電極感測不同活性物質,將電漿與熱處理電極進行比較,以葡萄糖進行感測,MP120/0.8Cu 有最好的感測表現,具有低偵測極限 (1.25 μM)、線性範圍 (0.1 – 6 mM) 及高靈敏度 (2.04 mA/mM cm2)。以雙氧水進行感測,MP120/1.5Cu 有最好的感測表現,具有低偵測極限 (25.67 μM)、線性範圍 (0.1 - 5 mM) 及高靈敏度 (0.86 mA/mM cm2)。以抗壞血酸進行感測,MP120/0.8Cu 有最好的感測表現,具有低偵測極限 (35.78 μM)、線性範圍 (0.1 - 7 mM) 及高靈敏度 (1.66 mA/mM cm2)。第三部分為探討銅氧化物電極包覆 poly(HEMA-co-SBMA) 水膠對感測之影響,以葡萄糖與雙氧水感測作為比較,實驗結果顯示,包覆 poly(HEMA-co-SBMA) 水膠之電極所計算出的靈敏度與偵測極限並無差異,說明包覆水膠不會對感測表現造成影響。


This thesis aims to prepare non-enzymatic biosensor with high sensitivity and low limit of detection (LOD) by applying the derivative of copper oxides. This study used microwave plasma to prepare the copper oxide electrode which shows the advantages of rapid and solvent-free processing. Then, the copper oxide electrodes were used to detect different electroactive species. For the furthering application, the copper oxide electrodes were covered by poly(HEMA-co-SBMA) hydrogels for the potential to combine the hydrogels with metal oxide.
This thesis is composed of three parts. The first part focused on the characterization of copper oxide electrode. Scanning electron microscope (SEM) was used to observe surface morphology. X-ray diffractometer (XRD) and electron spectroscopy for chemical analysis (ESCA) were used to analyze the chemical state of copper oxide. Digital multimeter was selected to measure the resistance. The electroactive area was calculated by cyclic voltammetry. In the second part, the copper oxide electrodes were applied to detect different electroactive species. The experiments were conducted by the copper oxide electrodes which were treated by microwave plasma or heat. For glucose detection, MP120/0.8Cu showed the best performance with the lowest LOD (1.25 μM), the highest sensitivity (2.04 mA/mM cm2) and a linear range for 0.1 mM to 6 mM. For H2O2 detection, MP120/1.5Cu revealed the best performance with the lowest LOD (25.67 μM), the highest sensitivity (0.86 mA/mM cm2) and a linear range for 0.1 mM to 5 mM. For ascorbic acid detection, MP120/0.8Cu exhibited the best performance with the lowest LOD (35.78 μM), the highest sensitivity (1.66mA/mM cm2) and a linear range for 0.1 mM to 7 mM. Finally, the effect of copper oxide electrode covered by poly(HEMA-co-SBMA) hydrogel for sensing was investigated. To compare the performance between glucose and hydrogen peroxide sensing, the experimental results showed that the calculated sensitivity and LOD of the copper oxide electrode covered with poly(HEMA-co-SBMA) hydrogel showed no difference, indicating that the incorporation of hydrogel can be further used to facilitate the potential flexible electrode.
In conclusion, copper oxide electrodes were successfully prepared by microwave plasma system in this study and can be applied to detect glucose, hydrogen peroxide and ascorbic acid with good sensitivity, linear range, and LOD.

摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XVII 第一章 緒論 1 1-1 研究背景 1 1-2 研究目標 2 第二章 文獻回顧 3 2-1 生物感測器簡介 3 2-1-1 生物感測器定義 3 2-1-2 生物感測器之基本結構與原理 3 2-2 電化學式生物感測器 6 2-2-1 電流式 (Amperometry) 生物感測器 7 2-3 非酵素型生物感測器 8 2-3-1 金屬材料的非酵素型生物感測器 8 2-3-2 金屬氧化物材料的非酵素型生物感測器 9 2-4 銅氧化物之製備 10 2-5 銅氧化物應用於感測的文獻 17 第三章 實驗方法與儀器原理 25 3-1 實驗設備 25 3-2 實驗藥品與配製 26 3-2-1 實驗藥品 26 3-2-2 電化學溶液配製 27 3-3 實驗方法與步驟 28 3-3-1 基材準備 28 3-3-2 進行銅電極處理 28 3-3-3 銅氧化物電極之製備 29 3-3-4 製備 poly(HEMA-co-SBMA) 水膠 30 3-3-5 包覆 poly(HEMA-co-SBMA) 水膠於銅線上 31 3-4 分析儀器原理及方法 32 3-4-1 水接觸角量測儀 (water contact angle measurement device, WCA) 32 3-4-2 場發射電子顯微鏡分析 (field emission scanning electron microscopy, FE-SEM) 33 3-4-3 X 光繞射分析 (X-ray diffraction, XRD) 34 3-4-4 化學分析電子能譜儀 (Electron spectroscopy for chemical analysis, ESCA) 35 3-4-5 紫外光/可見光分光光譜儀 (UV-vis) 36 3-4-6 膨潤度量測 37 3-4-7 導電度量測方式 37 3-4-8 ESCA 數據處理與分峰方式 38 3-5 電化學分析原理 39 3-5-1 電化學分析裝置 39 3-5-2 循環伏安法 (cyclic voltammetric method) 40 3-5-3 計時安培法 41 3-6 樣品命名 43 第四章 結果與討論 45 4-1 銅線表面特徵分析 45 4-1-1 銅線表面型態分析 45 4-1-2 晶體結構分析 48 4-1-3 微波電漿處理及熱處理銅線之導電度分析 50 4-1-4 活性表面積探討 51 4-1-5 微波電漿與熱處理對銅氧化物化學組成與結構之影響 52 4-2 電活性物質感測 55 4-2-1 微波電漿處理與熱處理銅線應用於感測葡萄糖 55 4-2-2 微波電漿與熱處理銅線應用於感測雙氧水 58 4-2-3 微波電漿與熱處理銅線應用於感測抗壞血酸 61 4-2-4 微波電漿處理銅線應用於感測尿酸 63 4-2-5 微波電漿處理銅線應用於感測乳酸 65 4-2-6 抗干擾測試 67 4-3 Poly(HEMA-co-SBMA) 水膠之性質 67 4-3-1 Poly(HEMA-co-SBMA) 水膠之濕潤性 67 4-3-2 Poly(HEMA-co-SBMA) 水膠之膨潤度 68 4-3-3 Poly(HEMA-co-SBMA) 水膠之穿透度 68 4-4 以 poly(HEMA-co-SBMA) 水膠作為絕緣層對感測之影響 68 4-4-1 以 poly(HEMA-co-SBMA) 水膠作為銅氧化物電極絕緣層對葡萄糖感測之影響 69 4-4-2 以 poly(HEMA-co-SBMA) 水膠作為銅氧化物電極絕緣層對雙氧水感測之影響 71 4-4-3 71 第五章 結論 135 參考文獻 137 附錄 146

[1] Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C., Mbanya, J.C., Pavkov, M.E., Ramachandaran, A., Wild, S.H., James, S., Herman, W.H., Zhang, P., Bommer, C., Kuo, S., Boyko, E.J., and Magliano, D.J., IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 2022. 183: p. 109119.
[2] Hussain, M.H., Fook, L.P., Putri, M.K.S., Tan, H.L., Bakar, N.F.A., and Radacsi, N., Advances on ultra-sensitive electrospun nanostructured electrochemical and colorimetric sensors for diabetes mellitus detection. Nano Materials Science, 2021. 3(4): p. 321-343.
[3] Chen, W., Cai, S., Ren, Q.-Q., Wen, W., and Zhao, Y.-D., Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 2012. 137(1): p. 49-58.
[4] Dong, Q., Ryu, H., and Lei, Y., Metal oxide based non-enzymatic electrochemical sensors for glucose detection. Electrochimica Acta, 2021. 370: p. 137744.
[5] Metkar, S.K. and Girigoswami, K., Diagnostic biosensors in medicine–a review. Biocatalysis and Agricultural Biotechnology, 2019. 17: p. 271-283.
[6] Song, Y., Lin, B., Tian, T., Xu, X., Wang, W., Ruan, Q., Guo, J., Zhu, Z., and Yang, C., Recent progress in microfluidics-based biosensing. Analytical Chemistry, 2018. 91(1): p. 388-404.
[7] Goode, J., Rushworth, J., and Millner, P., Biosensor regeneration: a review of common techniques and outcomes. Langmuir, 2015. 31(23): p. 6267-6276.
[8] Thévenot, D.R., Toth, K., Durst, R.A., and Wilson, G.S., Electrochemical biosensors: recommended definitions and classification. Biosensors and Bioelectronics, 2001. 16(1-2): p. 121-131.
[9] Fu, Z., Lu, Y.-C., and Lai, J.J., Recent advances in biosensors for nucleic acid and exosome detection. Chonnam Medical Journal, 2019. 55(2): p. 86-98.
[10] He, L., Huang, R., Xiao, P., Liu, Y., Jin, L., Liu, H., Li, S., Deng, Y., Chen, Z., and Li, Z., Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chinese Chemical Letters, 2021. 32(5): p. 1593-1602.
[11] Hammond, J.L., Formisano, N., Estrela, P., Carrara, S., and Tkac, J., Electrochemical biosensors and nanobiosensors. Essays in Biochemistry, 2016. 60(1): p. 69-80.
[12] Wilson, R. and Turner, A., Glucose oxidase: an ideal enzyme. Biosensors and Bioelectronics, 1992. 7(3): p. 165-185.
[13] Sukeri, A. and Bertotti, M., Electrodeposited honeycomb-like dendritic porous gold surface: An efficient platform for enzyme-free hydrogen peroxide sensor at low overpotential. Journal of Electroanalytical Chemistry, 2017. 805: p. 18-23.
[14] Ding, Y., Wang, Y., Su, L., Bellagamba, M., Zhang, H., and Lei, Y., Electrospun Co3O4 nanofibers for sensitive and selective glucose detection. Biosensors and Bioelectronics, 2010. 26(2): p. 542-548.
[15] McCreery, R.L., Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews, 2008. 108(7): p. 2646-2687.
[16] Jena, B.K. and Raj, C.R., Enzyme‐free amperometric sensing of glucose by using gold nanoparticles. Chemistry–A European Journal, 2006. 12(10): p. 2702-2708.
[17] Zhu, H., Li, L., Zhou, W., Shao, Z., and Chen, X., Advances in non-enzymatic glucose sensors based on metal oxides. Journal of Materials Chemistry B, 2016. 4(46): p. 7333-7349.
[18] Teymourian, H., Salimi, A., and Khezrian, S., Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Biosensors and Bioelectronics, 2013. 49: p. 1-8.
[19] Hou, C., Tang, W., Zhang, C., Wang, Y., and Zhu, N., A novel and sensitive electrochemical sensor for bisphenol A determination based on carbon black supporting ferroferric oxide nanoparticles. Electrochimica Acta, 2014. 144: p. 324-331.
[20] Wen, T., Zhu, W., Xue, C., Wu, J., Han, Q., Wang, X., Zhou, X., and Jiang, H., Novel electrochemical sensing platform based on magnetic field-induced self-assembly of Fe3O4@ Polyaniline nanoparticles for clinical detection of creatinine. Biosensors and Bioelectronics, 2014. 56: p. 180-185.
[21] Zeng, G., Li, W., Ci, S., Jia, J., and Wen, Z., Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Scientific Reports, 2016. 6(1): p. 1-8.
[22] Aydoğdu, G., Zeybek, D.K., Zeybek, B., and Pekyardımcı, Ş., Electrochemical sensing of NADH on NiO nanoparticles-modified carbon paste electrode and fabrication of ethanol dehydrogenase-based biosensor. Journal of Applied Electrochemistry, 2013. 43(5): p. 523-531.
[23] Khairy, M. and El-Safty, S.A., Nanosized rambutan-like nickel oxides as electrochemical sensor and pseudocapacitor. Sensors and Actuators B: Chemical, 2014. 193: p. 644-652.
[24] Leonardi, S.G., Marini, S., Espro, C., Bonavita, A., Galvagno, S., and Neri, G., In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchimica Acta, 2017. 184(7): p. 2375-2385.
[25] Verma, N. and Kumar, N., Synthesis and biomedical applications of copper oxide nanoparticles: an expanding horizon. ACS Biomaterials Science and Engineering, 2019. 5(3): p. 1170-1188.
[26] Kuo, C.-H. and Huang, M.H., Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures. The Journal of Physical Chemistry C, 2008. 112(47): p. 18355-18360.
[27] Shin, H.S., Song, J.Y., and Yu, J., Template-assisted electrochemical synthesis of cuprous oxide nanowires. Materials Letters, 2009. 63(3-4): p. 397-399.
[28] Daltin, A.-L., Addad, A., and Chopart, J.-P., Potentiostatic deposition and characterization of cuprous oxide films and nanowires. Journal of Crystal Growth, 2005. 282(3-4): p. 414-420.
[29] Hong, X., Wang, G., Zhu, W., Shen, X., and Wang, Y., Synthesis of sub-10 nm Cu2O nanowires by poly (vinyl pyrrolidone)-assisted electrodeposition. The Journal of Physical Chemistry C, 2009. 113(32): p. 14172-14175.
[30] Kumar, K.Y., Muralidhara, H., Nayaka, Y., Hanumanthappa, H., Veena, M., and Kumar, S.K., Hydrothermal synthesis of hierarchical copper oxide nanoparticles and its potential application as adsorbent for Pb (II) with high removal capacity. Separation Science and Technology, 2014. 49(15): p. 2389-2399.
[31] Capek, I., Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Advances in Colloid and Interface Science, 2004. 110(1-2): p. 49-74.
[32] Li, C., Yin, Y., Hou, H., Fan, N., Yuan, F., Shi, Y., and Meng, Q., Preparation and characterization of Cu(OH)2 and CuO nanowires by the coupling route of microemulsion with homogenous precipitation. Solid State Communications, 2010. 150(13-14): p. 585-589.
[33] Zhu, L., Chen, Y., Zheng, Y., Li, N., Zhao, J., and Sun, Y., Ultrasound assisted template-free synthesis of Cu(OH)2 and hierarchical CuO nanowires from Cu7Cl4(OH)10· H2O. Materials Letters, 2010. 64(8): p. 976-979.
[34] Huang, L., Yang, S., Li, T., Gu, B., Du, Y., Lu, Y., and Shi, S., Preparation of large-scale cupric oxide nanowires by thermal evaporation method. Journal of Crystal Growth, 2004. 260(1-2): p. 130-135.
[35] Wang, J., Electrochemical glucose biosensors. Chemical Reviews, 2008. 108(2): p. 814-825.
[36] Zhang, Y., Liu, Y., Su, L., Zhang, Z., Huo, D., Hou, C., and Lei, Y., CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sensors and Actuators B: Chemical, 2014. 191: p. 86-93.
[37] Reitz, E., Jia, W., Gentile, M., Wang, Y., and Lei, Y., CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2008. 20(22): p. 2482-2486.
[38] Zhang, F., Huang, S., Guo, Q., Zhang, H., Li, H., Wang, Y., Fu, J., Wu, X., Xu, L., and Wang, M., One-step hydrothermal synthesis of Cu2O/CuO hollow microspheres/reduced graphene oxide hybrid with enhanced sensitivity for non-enzymatic glucose sensing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. 602: p. 125076.
[39] Sun, S., Zhang, X., Sun, Y., Yang, S., Song, X., and Yang, Z., Facile water-assisted synthesis of cupric oxide nanourchins and their application as nonenzymatic glucose biosensor. ACS applied materials & Interfaces, 2013. 5(10): p. 4429-4437.
[40] Weng, S., Zheng, Y., Zhao, C., Zhou, J., Lin, L., Zheng, Z., and Lin, X., CuO nanoleaf electrode: facile preparation and nonenzymatic sensor applications. Microchimica Acta, 2013. 180(5): p. 371-378.
[41] Müller, A., Pozebon, D., and Dressler, V.L., Advances of nitrogen microwave plasma for optical emission spectrometry and applications in elemental analysis: a review. Journal of Analytical Atomic Spectrometry, 2020. 35(10): p. 2113-2131.
[42] Huhtamäki, T., Tian, X., Korhonen, J.T., and Ras, R.H., Surface-wetting characterization using contact-angle measurements. Nature Protocols, 2018. 13(7): p. 1521-1538.
[43] Akhtar, K., Khan, S.A., Khan, S.B., and Asiri, A.M., Scanning electron microscopy: principle and applications in nanomaterials characterization, in Handbook of materials characterization. 2018, Springer: Berlin. p. 113-145.
[44] Zhu, F.-Y., Wang, Q.-Q., Zhang, X.-S., Hu, W., Zhao, X., and Zhang, H.-X., 3D nanostructure reconstruction based on the SEM imaging principle, and applications. Nanotechnology, 2014. 25(18): p. 185705.
[45] He, K., Chen, N., Wang, C., Wei, L., and Chen, J., Method for determining crystal grain size by x‐ray diffraction. Crystal Research Technology, 2018. 53(2): p. 1700157.
[46] Epp, J., X-ray diffraction (XRD) techniques for materials characterization, in Materials characterization using nondestructive evaluation (NDE) methods. 2016, Elsevier: Amsterdam. p. 81-124.
[47] Oswald, S., X‐ray photoelectron spectroscopy in analysis of surfaces. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 2006.
[48] Venezia, A.M., X-ray photoelectron spectroscopy (XPS) for catalysts characterization. Catalysis Today, 2003. 77(4): p. 359-370.
[49] Perkampus, H.-H., UV-VIS Spectroscopy and its Applications. 2013, Berlin: Springer Science & Business Media.
[50] Shen, J., Yan, B., Li, T., Long, Y., Li, N., and Ye, M., Mechanical, thermal and swelling properties of poly (acrylic acid)–graphene oxide composite hydrogels. Soft Matter, 2012. 8(6): p. 1831-1836.
[51] Sharma, S., Singh, N., Tomar, V., and Chandra, R., A review on electrochemical detection of serotonin based on surface modified electrodes. Biosensors, 2018. 107: p. 76-93.
[52] Inzelt, G., Lewenstam, A., and Scholz, F., Handbook of reference electrodes. Vol. 541. 2013, Berlin: Springer.
[53] Bard, A.J., Faulkner, L.R., and White, H.S., Electrochemical methods: fundamentals and applications. 2022, New York: John Wiley & Sons.
[54] Amine, A. and Mohammadi, H., Amperometry. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2018.
[55] Jin, W. and Maduraiveeran, G., Nanomaterial-based environmental sensing platforms using state-of-the-art electroanalytical strategies. Journal of Analytical Science, 2018. 9(1): p. 1-11.
[56] Shrivastava, A. and Gupta, V.B., Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles of Young Scientists, 2011. 2(1): p. 21-25.
[57] Liang, J., Kishi, N., Soga, T., and Jimbo, T., Cross-sectional characterization of cupric oxide nanowires grown by thermal oxidation of copper foils. Applied Surface Science, 2010. 257(1): p. 62-66.
[58] Chawla, M., Randhawa, J.K., and Siril, P.F., Calcination temperature as a probe to tune the non-enzymatic glucose sensing activity of Cu–Ni bimetallic nanocomposites. New Journal of Chemistry, 2017. 41(11): p. 4582-4591.
[59] Karthik, K., Jaya, N.V., Kanagaraj, M., and Arumugam, S., Temperature-dependent magnetic anomalies of CuO nanoparticles. Solid State Communications, 2011. 151(7): p. 564-568.
[60] Lee, Y.-J., Kim, S., Park, S.-H., Park, H., and Huh, Y.-D., Morphology-dependent antibacterial activities of Cu2O. Materials Letters, 2011. 65(5): p. 818-820.
[61] Horak, P., Bejsovec, V., Vacik, J., Lavrentiev, V., Vrnata, M., Kormunda, M., and Danis, S., Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: application in chemiresistors. Applied Surface Science, 2016. 389: p. 751-759.
[62] Wang, R.-C. and Li, C.-H., Improved morphologies and enhanced field emissions of CuO nanoneedle arrays by heating ZnO coated copper foils. Crystal Growth & Design, 2009. 9(5): p. 2229-2234.
[63] Kashani, H., Kim, C., Rudolf, C., Perkins, F.K., Cleveland, E.R., and Kang, W., An Axially Continuous Graphene–Copper Wire for High‐Power Transmission: Thermoelectrical Characterization and Mechanisms. Advanced Materials, 2021. 33(51): p. 2104208.
[64] Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L., A practical beginner’s guide to cyclic voltammetry. Journal of Chemical Education, 2018. 95(2): p. 197-206.
[65] Abdel-Monem, Y.K., Emam, S.M., and Okda, H.M., Solid state thermal decomposition synthesis of CuO nanoparticles from coordinated pyrazolopyridine as novel precursors. Journal of Materials Science: Materials in Electronics, 2017. 28(3): p. 2923-2934.
[66] Song, J., Zhang, F., Hu, Q., Jiang, W., Li, D., and Zhang, B., A Novel CeO2/Cu2O/CuO Nanocomposite Designed from a CeAlCu Glass Precursor as an Excellent Dual Function Catalyst in Dye Wastewater Remediation. ChemCatChem, 2021. 13(3): p. 924-933.
[67] Yuan, M., Guo, X., and Pang, H., Derivatives (Cu/CuO, Cu/Cu2O, and CuS) of Cu superstructures reduced by biomass reductants. Materials Today Chemistry, 2021. 21: p. 100519.
[68] Sahai, A., Goswami, N., Kaushik, S., and Tripathi, S., Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization. Applied Surface Science, 2016. 390: p. 974-983.
[69] Biesinger, M.C., Advanced Studies of Transition Metal X-ray Photoelectron Spectra, in Engineering and the Environment 2012, University of South Australia.
[70] Cocco, F., Elsener, B., Fantauzzi, M., Atzei, D., and Rossi, A., Nanosized surface films on brass alloys by XPS and XAES. RSC advances, 2016. 6(37): p. 31277-31289.
[71] Na, W., Lee, J., Jun, J., Kim, W., Kim, Y.K., and Jang, J., Highly sensitive copper nanowire conductive electrode for nonenzymatic glucose detection. Journal of Industrial and Engineering Chemistry, 2019. 69: p. 358-363.
[72] Mishra, A.K., Mukherjee, B., Kumar, A., Jarwal, D.K., Ratan, S., Kumar, C., and Jit, S., Superficial fabrication of gold nanoparticles modified CuO nanowires electrode for non-enzymatic glucose detection. RSC Advances, 2019. 9(4): p. 1772-1781.
[73] Lu, W., Sun, Y., Dai, H., Ni, P., Jiang, S., Wang, Y., Li, Z., and Li, Z., Direct growth of pod-like Cu2O nanowire arrays on copper foam: highly sensitive and efficient nonenzymatic glucose and H2O2 biosensor. Sensors and Actuators B: Chemical, 2016. 231: p. 860-866.
[74] Wang, Y., Ji, Z., Shen, X., Zhu, G., Wang, J., and Yue, X., Facile growth of Cu2O hollow cubes on reduced graphene oxide with remarkable electrocatalytic performance for non-enzymatic glucose detection. New Journal of Chemistry, 2017. 41(17): p. 9223-9229.
[75] Meng, F., Shi, W., Sun, Y., Zhu, X., Wu, G., Ruan, C., Liu, X., and Ge, D., Nonenzymatic biosensor based on CuxO nanoparticles deposited on polypyrrole nanowires for improving detectionrange. Biosensors and Bioelectronics, 2013. 42: p. 141-147.
[76] Zhao, J.-w., Yan, Z.-k., Qin, L.-r., Feng, X.-n., and Wang, P., Application of cuprous oxide nanowires in an electrochemical sensor for ascorbic acid. Chemistry Letters, 2014. 43(6): p. 814-816.
[77] Wang, B., He, J., Liu, F., and Ding, L., Rapid synthesis of Cu2O/CuO/rGO with enhanced sensitivity for ascorbic acid biosensing. Journal of Alloys and Compounds, 2017. 693: p. 902-908.
[78] Hayat, K., Munawar, A., Zulfiqar, A., Akhtar, M.H., Ahmad, H.B., Shafiq, Z., Akram, M., Saleemi, A.S., and Akhtar, N., CuO hollow cubic caves wrapped with biogenic N-rich graphitic C for simultaneous monitoring of uric acid and xanthine. ACS Applied Materials & Interfaces, 2020. 12(42): p. 47320-47329.
[79] Heo, S.G., Yang, W.-S., Kim, S., Park, Y.M., Park, K.-T., Oh, S.J., and Seo, S.-J., Synthesis, characterization and non-enzymatic lactate sensing performance investigation of mesoporous copper oxide (CuO) using inverse micelle method. Applied Surface Science, 2021. 555: p. 149638.
[80] Zhang, F., Xiao, X., Wang, J., Huang, S., Zhang, H., Zhang, W., Guo, X., Zhang, D., and Wang, M., Facile synthesis of uniform CuO/Cu2O composite hollow microspheres for a non-enzymatic glucose sensor. Materials Research Express, 2019. 6(11): p. 115049.
[81] Momeni, S. and Sedaghati, F., CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance toward formaldehyde oxidation. Microchemical Journal, 2018. 143: p. 64-71.
[82] Yu, C., Cui, J., Wang, Y., Zheng, H., Zhang, J., Shu, X., Liu, J., Zhang, Y., and Wu, Y., Porous HKUST-1 derived CuO/Cu2O shell wrapped Cu(OH)2 derived CuO/Cu2O core nanowire arrays for electrochemical nonenzymatic glucose sensors with ultrahigh sensitivity. Applied Surface Science, 2018. 439: p. 11-17.
[83] Inyang, A., Kibambo, G., Palmer, M., Cummings, F., Masikini, M., Sunday, C., and Chowdhury, M., One step copper oxide (CuO) thin film deposition for non-enzymatic electrochemical glucose detection. Thin Solid Films, 2020. 709: p. 138244.
[84] Song, M.-J., Hwang, S.W., and Whang, D., Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta, 2010. 80(5): p. 1648-1652.
[85] Miao, X.-M., Yuan, R., Chai, Y.-Q., Shi, Y.-T., and Yuan, Y.-Y., Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. Journal of Electroanalytical Chemistry, 2008. 612(2): p. 157-163.
[86] Hsu, Y.-K., Chen, Y.-C., and Lin, Y.-G., Spontaneous formation of CuO nanosheets on Cu foil for H2O2 detection. Applied Surface Science, 2015. 354: p. 85-89.
[87] Huang, J., Zhu, Y., Zhong, H., Yang, X., and Li, C., Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Applied Materials & Interfaces, 2014. 6(10): p. 7055-7062.
[88] Raveendran, J., Krishnan, R.G., Nair, B.G., and Satheesh Babu, T., Voltammetric determination of ascorbic acid by using a disposable screen printed electrode modified with Cu(OH)2 nanorods. Microchimica Acta, 2017. 184(9): p. 3573-3579.
[89] You, Q., Liu, T., Pang, J., Jiang, D., Chu, Z., and Jin, W., In situ fabrication of CuO nanowire film for high-sensitive ascorbic acid recognition. Sensors and Actuators B: Chemical, 2019. 296: p. 126617.
[90] Khairy, M. and Mahmoud, B.G., Copper Oxide Microstructures with Hemisphere Pineapple Morphology for Selective Amperometric Determination of Vitamin C (L‐ascorbic Acid) in Human Fluids. Electroanalysis, 2016. 28(10): p. 2606-2612.
[91] Krishnamoorthy, K., Sudha, V., Kumar, S.M.S., and Thangamuthu, R., Simultaneous determination of dopamine and uric acid using copper oxide nano-rice modified electrode. Journal of Alloys and Compounds, 2018. 748: p. 338-347.
[92] Buledi, J.A., Ameen, S., Memon, S.A., Fatima, A., Solangi, A.R., Mallah, A., Karimi, F., Malakmohammadi, S., Agarwal, S., and Gupta, V.K., An improved non-enzymatic electrochemical sensor amplified with CuO nanostructures for sensitive determination of uric acid. Open Chemistry, 2021. 19(1): p. 481-491.
[93] He, G. and Wang, L., One-step preparation of ultra-thin copper oxide nanowire arrays/copper wire electrode for non-enzymatic glucose sensor. Ionics, 2018. 24(10): p. 3167-3175.
[94] Choudhary, S., Sarma, J., Pande, S., Ababou-Girard, S., Turban, P., Lepine, B., and Gangopadhyay, S., Oxidation mechanism of thin Cu films: A gateway towards the formation of single oxide phase. AIP Advances, 2018. 8(5): p. 055114.
[95] Wang, L., Gao, G., Zhou, Y., Xu, T., Chen, J., Wang, R., Zhang, R., and Fu, J., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Applied Materials & Interfaces, 2018. 11(3): p. 3506-3515.
[96] Jerónimo, P.C., Araújo, A.N., and Montenegro, M.C.B., Optical sensors and biosensors based on sol–gel films. Talanta, 2007. 72(1): p. 13-27.
[97] Lv, Q., Wu, M., and Shen, Y., Enhanced swelling ratio and water retention capacity for novel super-absorbent hydrogel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019. 583: p. 123972.
[98] Chen, J. and Park, K., Synthesis and characterization of superporous hydrogel composites. Journal of controlled release, 2000. 65(1-2): p. 73-82.
[99] Park, H., Guo, X., Temenoff, J.S., Tabata, Y., Caplan, A.I., Kasper, F.K., and Mikos, A.G., Effect of swelling ratio of injectable hydrogel composites on chondrogenic differentiation of encapsulated rabbit marrow mesenchymal stem cells in vitro. Biomacromolecules, 2009. 10(3): p. 541-546.

無法下載圖示 全文公開日期 2025/08/04 (校內網路)
全文公開日期 2032/08/04 (校外網路)
全文公開日期 2032/08/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE