簡易檢索 / 詳目顯示

研究生: 丁柏佐
Po-Tso Ting
論文名稱: 製備非晶相之 Nb-Co-Fe 金屬氧化物觸媒 應用於產氧反應
Preparation of Amorphous Metal Oxide Catalysts Containing Niobium, Cobalt, and Iron for Oxygen Evolution Reaction
指導教授: 江佳穎
Chia-Ying Chiang
口試委員: 林昇佃
Shawn D. Lin
蔡大翔
Dah-Shyang Tsai
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 163
中文關鍵詞: 電解水產氧反應金屬氧化物金屬有機光化學沉積法
外文關鍵詞: PMOD
相關次數: 點閱:229下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以PMOD(Photochemical metal-organic deposition)法製備金屬氧化物觸媒,由於其製備溫度及設備成本低,製程也相當簡單,有助於量產。在產氧觸媒中,大多數催化效率好的電極材料為稀有或貴重金屬,如RuO2。找出在環境中擁有高含量且非貴重或稀有金屬的材料,並提升其產氧催化效率,為此次研究的主要目標。Niobium在地層中被發現擁有高的含量,且具有催化活性,其Corrosion resistance也相當地好,因此在這次電極製備上,添加了少許Niobium在金屬氧化物中。

由Cyclic voltammetry曲線可以了解,在產氧反應中當電流密度到達0.5 mA cm-2時,Nb20Co40Fe40Ox的電位為1.52 V,而CoOx、FeOx及NbOx的電位分別為1.46 V、1.63 V及2.2 V,顯示了CoOx是個不錯的產氧催化材料。在Tafel slope方面,Nb20Co40Fe40Ox的值為31 ± 5 mV dec-1,相較於CoOx的42 ± 2 mV dec-1,顯示了Nb20Co40Fe40Ox擁有高的產氧催化活性。一個優良的產氧電極除了高的產氧催化活性外,也須擁有好的穩定度,為了確認電極在產氧反應中的穩定性,因此做了OER stability tests。在定電流時(1 mA),當掃描時間過了1800秒,Nb20Co40Fe40Ox及CoOx的potential increased rate分別為3.29 %及39.25 %。此外,利用CV cycling來觀察各個金屬氧化物的穩定度,可得知當第500個cycle時,Nb20Co40Fe40Ox及CoOx的在到達1 mA時的電位附近,Current density loss分別為25.07 %及46.04 %。由上述這些數據顯示了Nb20Co40Fe40Ox在產氧反應中,無論是催化活性或是穩定度都相當地好,可以作為一個優良的產氧觸媒。


Metal oxides are considered as the stable catalysts which have high catalytic activity for oxygen evolution reaction (OER), such as IrO2, spinel solids and amorphous metal oxides. In addition, amorphous metal oxides have been proved that they have potential to replace noble metal as OER materials. Niobium is abundant on earth’s upper crust, and its oxide has been proved to have photochemical ability to produce oxygen in water splitting. Besides, Niobium is recognized for having excellent stabilization capacity. As a result, a system is expected to present an excellent resistance to anodic corrosion.Therefore, this research will focus on the series of Niobium oxides for OER. Photochemical metal-organic deposition (PMOD) is one of the best ways to make amorphous thin films, due to the cost of this process is cheap, operating temperature and pressure are low, equipment is simple and it is suitable for multicomponent amorphous oxides preparation.

In order to check the kinetic performance of catalysts, cyclic voltammetry curve (CV) and Tafel slope is plotted. From the CV curve, as the current density reaches 0.5 mA cm-2, the potential of Nb20Co40Fe40Ox is only required 1.52 V. In addition, cobalt oxide, iron oxide and niobium oxide require potential 1.46 V, 1.63 V and 2.2 V, respectively. It shows that cobalt oxide has high catalytic activity for OER. From Tafel slope, the value of is 31 ± 5 mV dec-1, comparing to the tafel slope of CoOx (42±2 mV dec-1), it shows that Nb20Co40Fe40Ox has a relatively high catalytic activity. Not only high catalytic activity, but stabilty is also an important property of an excellent electrode. Therefore, in this study, I made the OER stability tests for the electrodes. Set the current density at 1 mA cm-2, as the scan time reached 1800 second, the potential increased rate of Nb20Co40Fe40Ox and CoOx are 3.29 % and 39.25 %, respectively. Beside, I used CV cycling to check the OER stability for metal oxides. At 500th cycle, the current density loss of Nb20Co40Fe40Ox and CoOx are 25.07 % and 46.04 %, respectively. From these results, they prove that Nb20Co40Fe40Ox has excellent stability and catalytic activity at oxygen evolution reaction.

摘要 1 ABSTRACT 2 誌謝 3 目錄 4 圖目錄 7 表目錄 12 第一章 緒論 15 1.1 研究動機 16 1.2 研究目的 18 第二章文獻回顧 20 2.1 電解水產氧 20 2.2 產氧反應機構 (OXYGEN EVOLUTION REACTION, OER) 21 2.2.1 影響產氧反應動力學及熱力學特性的反應機構及主要參數 24 2.2.2 產氧觸媒活性理論 27 2.3 觸媒表面吸脫附現象 30 2.4 觸媒製備 31 2.4.1 共沉澱法 (Co-precipitation) 31 2.4.2 含浸法 (Impregnation) 31 2.4.3 沉浸法 (Deposition-precipitation) 32 2.4.4 溶膠-凝膠法 (Sol-gel) 32 2.5金屬有機光化學沉積法 (PHOTOCHEMICAL METAL ORGANIC DEPOSITION METHOD) 35 2.5.1 傅立葉轉換紅外光譜(FTIR)檢測光解(Photolysis)反應 39 2.6 電化學反應 41 2.6.1 Tafel Slope 42 第三章實驗方法與儀器原理介紹 45 3.1 實驗方法 45 3.1.1 實驗架構 46 3.1.2 操作因子 47 3.2實驗藥品、材料與儀器設備 49 3.2.1 實驗藥品、材料: 49 3.2.2 實驗設備: 50 3.3 電極製備 51 3.4分析儀器原理簡介 52 3.4.1 感應偶合電漿原子發射光譜法 (Inductively coupled plasma-atomic emission spectroscopy, ICP – AES) 52 3.4.2 橢圓偏光儀 (Spectroscopic Ellipsometer) 53 3.4.3 霍爾效應量測儀 (Hall effect measurement system, HEM) 54 3.4.4 氣相層析儀 (Gas Chromatograph, GC) 55 3.4.5 X- ray光電子能譜分析 (X-ray photoelectron spectroscopy, XPS) 56 3.4.5.1 X-ray光電子能譜 56 3.4.5.2 光電效應 57 3.4.5.3 XPS儀器 58 3.4.6 傅立葉紅外線光譜分析(Fourier Transform Infrared Spectroscopy, FTIR) 60 IR光譜 60 紅外光譜儀 62 3.4.7電子掃描顯微鏡分析(Scanning Electron Microscopy, SEM) 65 3.4.7.1 場發射式電子顯微鏡(FE-SEM) 68 3.4.7.2 能量分散光譜儀系統(Energy Dispersive Spectroscopy, EDS) 70 3.4.8 電化學分析 71 循環伏安法(Cyclic Voltammetry, CV) 73 第四章結果與討論 75 4.1 傅立葉轉換紅外光譜 (FTIR)分析: 75 4.2高解析度場發射掃瞄式電子顯微鏡 (FE-SEM)分析: 80 4.2.1 薄膜厚度分析: 80 CoOx、FeOx、NbOx 80 Co60Fe40Ox 84 Nb40Co60Ox 85 Nb40Fe60Ox 87 Nb20Co40Fe40Ox 88 Summary of thickness by each metal oxide: 90 4.3能量分散光譜儀 (EDS)分析: 91 4.3.1 EDS and EDS mapping: 91 CoOx (254nm UV for 36hr, Annealing temperature: 100℃) 92 FeOx (254nm UV for 36hr, Annealing temperature: 100℃) 94 NbOx (254nm UV for 36hr, Annealing temperature: 100℃) 97 Co60Fe40Ox (254nm UV for 36hr, Annealing temperature: 100℃) 100 Nb40Co60Ox (254nm UV for 36hr, Annealing temperature: 100℃) 102 Nb40Fe60Ox (254nm UV for 36hr, Annealing temperature: 100℃) 104 Nb20Co40Fe40Ox (254nm UV for 36hr, Annealing temperature: 100℃) 107 Summary of element composition and ratio of metal oxides by EDS: 109 4.4 ESCA-X射線光電子能譜儀 (XPS)分析: 110 CoOx 110 FeOx 113 NbOx 114 Co60Fe40Ox 115 Nb40Co60Ox 117 Nb40Fe60Ox 119 Nb20Co40Fe40Ox 121 Summary of the XPS element ratio by each metal oxide: 124 4.5薄膜孔隙度分析: 126 4.6 電化學分析: 127 4.6.1電極動力學行為探討: 129 4.6.2 OER Stability test: 132 CV cycling: 132 E-t curve: 134 4.7感應耦合電漿原子發射光譜儀(ICP-AES)分析 136 4.8 霍爾量測儀(HALL EFFECT MEASUREMENT SYSTEM)分析 138 4.9 氣相層析儀 (GAS CHROMATOGRAPH)分析 139 第五章 結論與建議 140 參考文獻 142 APPENDIX A: 153 APPENDIX B: 157

Andronic, L. S. Photochemical metal organic deposition of layered materials of chromium oxide and lead oxide and of uranium oxide and cobalt oxide, Simon Fraser University MSc thesis, 2001.

Appleby, A. J. Evolution and reduction of oxygen on oxidized platinum in 85% orthophosphoric acid, J. Electroanal.Chem., 1970, 24, 97.

Avey, A. A., Hill, R. H. Solid State Photochemistry of Cu2(OH2)2(O2C(CH2)4CH3)4 in Thin Films:  The Photochemical Formation of High-Quality Films of Copper and Copper(I) Oxide. Demonstration of a Novel Lithographic Technique for the Patterning of Copper, J. Am. Chem. Soc., 1996, 118, 237.

Bagheri-Mohagheghi, M. M. and Shokooh-Saremi, M. Investigations on the physical properties of the SnO2–ZnO transparent conducting binary–binary system deposited by spray pyrolysis technique, Thin Solid Films, 2003, 441, 238.

Bard, A. J.; Fox, M. A. Artificial Photosynthesis: Solar Splitting of Water to Hydrogen and Oxygen. Accounts of Chemical Research, 1995, 28, 141-145.

Blair, S. L. Photochemical deposition of metal and metal oxide films from amorphous films of inorganic precursors, Simon Fraser University Ph.D thesis, 1996.

Bauer, E. Low energy electron microscopy, Reports on Progress in Physics, 1994, 57, 895.

Blair, S. L., Hill, R. H. Photochemistry of thin amorphous films of Fe(CO)4PPh3 on Si(111) surfaces, J. Organomet. Chem., 1998, 554, 63-73.

Bockris, J. O. M. Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen, J. Chem. Phys., 1956, 24, 817.

Bockris, J. O. M., Otagawa, T. The Electrocatalysis of Oxygen Evolution on Perovskites, J. Electrochem. Soc., 1984, 131, 290–302.

Bockris, J. O., Otagawa, T. The electrocatalysis of oxygen evolution on perovskites, J. Phys. Chem., 1983, 87, 2960.

Brinker, C. J., Scherer, G. W. Sol-Gel Science: The Physics and Chemistry of Sol Gel Processing, Academic Press: New York, 1990.

Bronislaw, M., Gonzalo, E. B. C. Photochemical properties of 1,3-diketonate transition metal chelates, Journal of Photochemistry and Photobiology, A: Chemistry, 1990, 52, 1.

Cheng, N., Liu, Q., Tian, J., Xue, Y., Asiri, A. M., Jiang, H., He, Y., Sun, X. Acidically oxidized carbon cloth: a novel metal-free oxygen evolution electrode with high catalytic activity, Chem. Commun., 2015, 51, 1616.

Chowdhuri, A. R., Takoudis, C. G. Investigation of the aluminum oxideySi(100) interface formed by chemical vapor deposition, Thin Solid Films, 2004, 446, 155.

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and non-legacy world. Chem. Rev., 2010, 110 (11), 6474–6502.

Cui H. L., Zhu G., Xie Y. A., Zhao W., Yang C., Lin T., Gu H. and Huang F. Q. Black Nanostructured Nb2O5 with Improved Solar Absorption and Enhanced Photoelectrochemical Water Splitting, J. Mater. Chem.A, 2015.

Dadachanji, D. Hoffman voltameter, Retrieved November 8, 2013, from http://www.newworldencyclopedia.org/entry/File:Hoffman_voltameter.jpg.

Damjanovic, A., Dey, A., Bockris, J. O’M. Kinetics of oxygen evolution and dissolution on platinum electrodes, Electrochim.Acta, 1966, 11, 791.

Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis, Chem. Cat. Chem., 2010, 2, 724-761.

Dincă, M., Surendranath, Y., Nocera, D. G. Nickel-Borate Oxygen-Evolving Catalyst that Functions Under Benign Conditions, Proc. Natl. Acad. Sci. U.S.A., 2010, 107, 10337-10341.

Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in natural waters. Energy Environ. Sci., 2011, 4, 499.

Gao, M., Hill, R. H. High efficiency photoresist-free lithography of UO3 patterns from amorphous films of uranyl complexes, J. Mater. Res., 1998, 13, 1379.

Gao, M., Hill, R. H. The mechanism of the photoreaction of uranyl 1,3-diketonate complexes as thin films on silicon surfaces, J. Photochem. Photobiol. A: Chemistry, 1996, 97, 73-79.

Gottesfeld, S., Srinivasan, S. Electrochemical and optical studies of thick oxide layers on iridium and their electrocatalytic activities for the oxygen evolution reaction, J. Electroanal. Chem., 1978, 86, 89-104.

Gil-Rostra, J., Garcia-Garcia, F. J., Yubero, F., Gonzalez-Elipe, A. R. Tuning the transmittance and the electrochromic behavior of CoxSiyOz thin films prepared by magnetron sputtering at glancing angle, Sol. Energy Mater. Sol. Cells, 2014, 123, 130.

Hamdani, M.; Singh, R. N.; Chartier, P. Co3O4 and Co-Based Spinel Oxides Bifunctional Oxygen Electrodes. Int. J. Electrochem. Sci., 2010, 5, 556-577.

Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M. J., Delmon, B. Low-temperature oxidation of CO over gold supported on TiO2, Alpha-Fe2O3, and Co3O4, J. Catal.,1993, 144, 175.

Hoare, J. P. Electrochemistry of Oxygen; Interscience: New York, 1968, 81.

Haxel, Gordon B., Hedrick, James B., and Orris, Greta J. Rare Earth Elements – Critical Resources for High Technology, Retrieved May 17, 2005, from http://pubs.usgs.gov/fs/2002/fs087-02/.

Hefner III, Robert A. The Grand Energy Transition: The Rise of Energy Gases, Sustainable Life and Growth, and the Next Great Economic Expansion. Hoboken, NJ: John Wiley & Sons, 2009.

Haruta, M., Yamada, N., Kobayashi, T., Iijima, S. Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon-Monoxide, J. Catal., 1989, 115, 2, 301-309.

Hahn, E. Methods of Calculating the Properties of Electron Lenses, Adv. Electronic and Electron Physics, 1989, 75, 233.

Hoare, J. P. In Encyclopedia of Electrochemistry of the Elements, Bard, A. J., Ed., Marcel Dekker: New York, 1982, 2, 191.

Holladay, J. D., Hu, J., King, D. L., Wang, Y. An overview of hydrogen production technologies, Catalysis Today, 2009, 139, 244-260.

Huheey, J. E., Keiter, E. A., Keiter, R. L. Coordination chemistry: Bonding, Spectra, and Magnetism, Inorganic Chemistry: Principles of Structure and Reactivity. New York, NY: HarperCollins College, 1993, 455-459.

Iakovlev, S., Solterbeck, C. H., Es-Souni, M., Zaporojtchenko, V. Rare-earth ions doping effects on the optical properties of sol-gel fabricated PbTiO3 thin films, Thin Solid Films, 2004, 446, 1, 50-53.

Iwakura, C., Honji, A., Tamura, H. The anodic evolution of oxygen on Co3O4 film electrodes in alkaline solutions, Electrochim.Acta, 1981, 26, 1319.

Jung, Y. S., Seo, J. Y., Lee, D. W., Jeon, D. Y. Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film, Thin Solid Films, 2003, 445, 63.

Kanan, M. W.; Nocera, D. G. In Situ Formation of an Oxygen-Evolving Catalyst in Neutral Water Containing Phosphate and Co2+, Science, 2008, 321, 1072-1075.

Kang, J. H., Myung, Y., Choi, J. W., Jang, D. M., Lee, C. W., Park, J. and Cha, E. H. Nb2O5 nanowire photoanode sensitized by a composition-tuned CdSxSe1-x shell, J. Mater. Chem., 2012, 22, 8413.

Katsounaros, I., Meier, J. C., Mayrhofer, K. J. J. The Impact of Chloride Ions and the Catalyst Loading on the Reduction of H2O2 on High-Surface-Area Platinum Catalysts, J. Electrochim. Acta, 2013, 110, 790–795.

Koper, M. T. M. Analysis of electrocatalytic reaction schemes: Distinction between rate-determining and potential-determining steps, J. Solid State Electrochem., 2013, 17, 2, 339–344.

Krasil'shchkov, A. I., Khim, Zh. Fiz., 1963, 37, 273.

Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: implications for electrocatalysis, J. Electroanal. Chem., 2011, 660, 254–260.

Law, W. L. Photochemical metal organic deposition of metal oxides, Simon Fraser University Ph.D thesis, 2004.

Luo, H., Song, W., Hoertz, P. G., Hanson, K., Ghosh, R., Rangan, S., Brennaman, M. K., Concepcion, J. J., Binstead, R. A. and Bartynski, R. A. A Sensitized Nb2O5 Photoanode for Hydrogen Production in a Dye-Sensitized Photoelectrosynthesis Cell, Chem. Mater., 2013, 25, 122-131.

Man, I. C., Su, H. Y., Calle-Vallejo, F., Hansen, H. A., Martínez, J. I., Inoglu, N. G., Kitchin, J., Jaramillo, T. F., Nrskov, J. K., Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces, Chem. Cat. Chem., 2011, 3, 1159–1165.

Malvern Instruments Ltd (accessed March 2007) Sample dispersion and refractive index guide, version 3.1, 1997.

Markovic, N. M., Schmidt, T. J., Stamenkovic, V. R., Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells, 2001, 1, 105–116.

Matsumoto, Y. and Sato, E. Electrocatalytic Properties of Transition Metal Oxides for Oxygen Evolution Reaction, Mater. Chem. Phys., 1986, 14, 5, 397-426.

Mehrotra, R. C and Bohra, R. Metal carboxylates, Academic Press, London, 1983.

Nayak, R., Gupta, V., Dawar, A. L., Sreenivas, K. Optical waveguiding in amorphous Tellurium oxide thin films, Thin Solid Films, 2003, 445, 118.

Nilsen, O., Foss, S., Fjellvåg, H., Kjekshus, A. Effect of substrate on the characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition, Thin Solid Films, 2004, 468, 65.

O'Grady, W. E., Iwakura, C., Huang, J. and Yeager, E.The Electrochemical Society, ed. Breiter M. W., Princeton, 1974, 286.

Ouattara, L., Fierro, S., Frey, O., Koudelka, M., Comninellis, C. Electrochemical comparison of IrO2 prepared by anodic oxidation of pure iridium and IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution, J. Appl. Electrochem., 2009, 39, 1361.

Ozer, N., Rubin, M. D., Lampert, C. M. Optical and electrochemical characteristics fo niobium oxide films prepared by sol-gel process and magnetron sputtering: A comparison, Solar Energy Materials and Solar Cells, 1996, 40 (4): 285-296.

Pauling, L., The Nature of the Chemical Bond, 3rd ed., 1960.

Ramaswamy N. and Mukerjee S. Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media, Adv. Phys. Chem., 2012, 1–17.

Rodney D. L. Smith, Mathieu S. Prévot, Randal D. Fagan, Simon Trudel, and Curtis P. Berlinguette, Journal of the American Chemical Society, 2013, 135 (31), 11580-11586.

Rossmeisl, J., Dimitrievski, K., Siegbahn, P. and Nrskov, J. K. Comparing Electrochemical and Biological Water Splitting, J. Phys. Chem. C, 2007, 111, 18821–18823.

Rossmeisl, J., Logadottir, A., Nrskov, J. K. Electrolysis of water on (oxidized) metal surfaces, Chem. Phys., 2005, 319, 178–184.

Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J., Nrskov, J. K. Electrolysis of water on oxide surfaces, J. Electroanal. Chem., 2007, 607, 1-2, 83–89.

Sabatier, P. Hydrogenation and dehydrogenation by catalysis, Ber. Dtsch. Chem. Ges., 1911, 44, 1984–2001.

Sharper, H., Doesburg, E. B. M., Quartel, J. M. C., Van Reijen, L. L. Synthesis of Methanation Catalyst by Deposition-precipitation in Preparation of Catalyst III, Elsevier Scientific Publishing Co. Amsterdam, 1983, 301-310.

Surendranath, Y., Kanan, M. W., Nocera, D. G. Mechanistic Studies of the Oxygen Evolution Reaction by a Cobalt-Phosphate Catalyst at Neutral pH, J. Am. Chem. Soc., 2010, 132, 16501.

Smith, R. D. L. ; Prevot, M. S. ; Fagan, R. D. ; Zhang, Z. ; Sedach, P. A. ; Siu, M. Kit Jack; Trudel, S. ; Berlinguette, C. P. Photochemical Route For Accessing Amorphous Metal Oxide Materials For Water Oxidation Catalysis. Science, 2013, 340, 60-63.

Santana, M. H. P., Da Silva, L.M.,De Faria, L.A.Investigation of surface properties of Ru-based oxide electrodescontaining Ti, Ce and Nb, Electrochimica Acta, 2003, 48, 1885-1891

Trasatti, S. In Electrochemistry of NoVel Materials, Lipkowski, J., Ross, P. N., Ed., VCH: New York, 1994, 207.

Tsuji, E., Imanishi, A., Fukui, K. I., Nakato, Y. Electrocatalytic activity of amorphous RuO2 electrode for oxygen evolution in an aqueous solution, Electrochim. Acta, 2011, 56, 2009.

Tsuji, E.; Imanishi, A.; Fukui, K.-I., Nakato, Y. Electrocatalytic Activity of Amorphous RuO2 Electrode for Oxygen Evolution in an Aqueous Solution.Electrochim. Acta, 2011, 56, 2009–2016.

Vanýsek, Petr (2012). "Electrochemical Series". In Haynes, William M. Handbook of Chemistry and Physics: 93rd Edition. Chemical Rubber Company, 5–80.

Vidueira, J. M., Contreras, A., Veziroglu, T. N., PV Autonomous Installation to Produce Hydrogen Via Electrolysis and its use in FC Buses, International Journal Hydrogen Energy, 2003, 28, 927-937.

Viet, A. L., Jose, R., Reddy, M. V., Chowdari, B. V. R. and Ramakrishna S. Nb2O5 photoelectrodes for dye-sensitized solar cells: choice of the polymorph, J. Phys. Chem. C, 2010, 114, 21795.

Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori E. A., Lewis, N. S. Solar Water Splitting Cells, Chem. Rev., 2010, 110, 6446–6473.

Zaharieva, I.; Chernev, P.; Risch, M.; Klingan, K.; Kohlhoff, M.; Fischer, A.; Dau, H. Electrosynthesis, functional, and structural characterization of a water-oxidizing manganese oxide. Energy Environ. Sci., 2012, 5, 7081-7089.

林智仁,場發射式掃描式電子顯微鏡簡介,工業材料雜誌第181期,96頁,民國91年。

無法下載圖示 全文公開日期 2020/08/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE