簡易檢索 / 詳目顯示

研究生: 林羲翰
Hsi-han Lin
論文名稱: 改良式四相位壓控振盪器與左手共振腔架構之雙頻帶壓控振盪器之設計
Design of Improved Quadrature Cross-Coupled VCO and Dual-Band VCOs With Left-Handed LC Resonator and Dual-Band VCOs With Left-Handed LC Resonator
指導教授: 徐敬文
Ching-Wen Hsue
張勝良
Sheng-Lyang Jang
口試委員: 黃進芳
Jhin-Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 60
中文關鍵詞: 四相位壓控振盪器左手LC網路雙頻帶壓控振盪器
外文關鍵詞: quadrature VCO, left-handed LC network, dual-band differential VCOs
相關次數: 點閱:319下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線通訊系統中,頻率合成器為提供一穩定信號供混頻器混頻使用。而在頻率合成器迴路之中,壓控振盪器為其主要核心電路。為了避免相鄰雜訊訊號對混頻造成干擾,故要求壓控振盪器須要是低相位雜訊。且在無線收發器中,常有鏡像雜訊存在而影響系統的性能,必須利用正交架構來消除鏡像雜訊,因此對於產生正交相位的振盪源也必須是低相位雜訊。但由於在設計振盪器時考慮的參數是多方面的,故定義一優質指數來評斷振盪器的優劣。
    首先,本論文提出了一改善相位雜訊的四相位壓控振盪器以及兩種新型雙頻帶之壓控振盪器。在第一個電路中,改良型的四相位壓控振盪器利用共閘極耦合代替傳統式共源極耦合。此電路在電壓0.8V時操作頻率為9.8GHz,其功率消耗為9.76mW,有較寬的調變範圍從8.52GHz到10.56GHz,以及輸出之相位雜訊在距離載波頻率1MHz 處所量測之結果可達-118.88dBc/Hz,其優質指數FOM為-188.86 dBc/Hz。
    其次,第二個電路呈現以分散式左手LC網路結構的一個雙頻帶環繞式駐波振盪器,其共振腔主要是由四個單位元件以串聯疊接方式組成,並以兩對交叉耦合器來補償左手共振腔的阻抗;至於雙頻帶的產生是以電壓控制變容器來完成。此電路使用台積電矽鍺0.18微米製程實現。量測數據結果輸出高頻的部份是6.73GHz至8.6GHz,而低頻部份從3.68GHz至3.73GHz。
    最後,第三個電路類似於第二個電路也以左手共振腔架構的雙頻帶模式之駐波壓控振盪器,不同於第二個電路的部份是雙頻帶的產生是以電晶體切換方式來執行。此電路是在台積電0.18微米製程下完成製作。量測數據結果,輸出訊號高頻的部份從7.18GHz至7.55GHz,而低頻部份從4.5GHz至4.64GHz。


    In wireless communication system, frequency synthesizer offers a stable signal for mixers. And in the synthesizer network, voltage-controlled oscillator (VCO) is the core block in this network. In order to avoid the adjacent noise to interfere mixing, we ask the voltage-controlled oscillator requires to have low phase noise. In RF transceiver system, there exists image noise and it leads to affect the system quality. We used the quadrature architecture to eliminate the image noise, for the reason that produces quadrature phases by quadrature voltage-controlled oscillator (QVCO) to lead to low phase noise. Since the the parameters should be traded off when we design VCO, we define a figure of merit (FOM) to characterize this VCO’s performance.
    Firstly, this report presents the quadrature VCO with improvement of phase noise for two novel dual-band VCOs having left-handed resonance. In the first chip, the proposed quadrature VCO uses common-gate coupled transistor instead of conventional common-source coupled transistor. The oscillation frequency QVCO range from 8.52 to 10.56 GHz and the power consumption is 9.76 mW at 0.8 V supply voltage. The measured phase noise is -118.88 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 9.86 GHz, and the FOM is -188.86 dBc/Hz.
    Secondly, the second chip propose a dual-band rotary standing-wave oscillator (RSWO) implemented with a distributed left-handed (LH) LC network. The network consists of four unit cells of left-handed LC resonator stacked in series. In addition, two pairs of cross-coupled transistors are used to compensate the loss of resonator. Varactors are used as the control to switch on/off the high or low-frequency bands. The proposed RSWO has been implemented with the TSMC 0.18 m SiGe BiCMOS technology. For measuring results, the output signals in the high-band frequencies are in the range of 6.73-8.60 GHz and the low-band frequencies of the output signals are in the range of 3.68-3.73 GHz.
    And finally, the third circuit design is similar to the second circuit. It use the structure of left-handed (LH) LC network, but the LC resonator is in shunt with a pair of cross-coupled transistors. With obviously different parts, the third circuit uses a pair of MOSFET mode-switches to switch on/off the frequency bands. In the fundamental mode, the SWO operates at higher frequency band. In the harmonic mode, the oscillator provides lower frequency band output. The proposed SWO has been implemented with the TSMC 0.18 m 1P6M CMOS technology. It can generate differential signals in the higher band frequency band which has the frequency range of 7.18-7.55 GHz and it produces the artificial signals in the lower frequency band which has the frequency range of 4.5-4.64 GHz.

    Table of Contents 中文摘要 I Abstract III 致謝 V List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 3 Chapter 2 Voltage-Controlled Oscillators 4 2.1 Introduction 4 2.2 Basic Concepts of Oscillator 5 2.2.1 Negative Resistor 7 2.3 Types of LC Oscillators 10 2.4 Design of Passive Element 12 2.4.1 Capacitor 12 2.4.2 Varactor 13 I. Inversion-Mode (I-Mode) Varactor 14 II. Accumulation-Mode (A-Mode) Varactor 15 2.4.3 Inductor 16 2.4.4 Transformer 17 I. Principle: 17 2.5 Specifications 18 2.5.1 Phase Noise 18 2.5.2 Tuning 21 2.5.3 Power Dissipation 22 2.5.4 Quality Factor 22 2.5.5 Figure of merit (FOM) 24 2.6 Quadrature Signal Generation 25 Chapter 3 An nMOS Cross-Coupled Quadrature VCO Using Coupling Common-Gate pMOSFETs 29 3.1 Introduction 29 3.2 Circuit Design 31 3.3 Measurement Results 34 Chapter 4 Dual-Band Left-Handed Rotary Standing Wave Voltage-Controlled Oscillator 38 4.1 Introduction 38 4.2 Circuit Design 40 4.3 Measurement Results 45 Chapter 5 Mode-Switching Left-Handed Standing Wave Voltage-Controlled Oscillator 47 5.1 Introduction 47 5.2 Circuit Design 48 5.3 Measurement Results 54 Chapter 6 Conclusion 55 References 57

    References

    [1] D. Leenaerts, J. van der Tang, C.S. Vaucher, Circuit Design For RF Transceivers, Kluwer Academic Publishers, 2001.
    [2] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905−910, Jun. 2000.
    [3] J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J.Solid-State Circuits, vol. 35, pp. 1368-1382, 2000.
    [4] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628,2001.
    [5] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
    [6] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [7] D. B. Leeson, “ A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 35, no. 3, pp. 329-330, Feb. 1966.
    [8] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [9] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [10] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [11] M. Tiebout, Low Power VCO Design in CMOS, Springer Berlin Heidelberg, 2006.
    [12] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [13] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp.896–909, Jun. 2001.
    [14] B. Razavi, RF Microelectronics (second edition), Prentice Hall Press 2011.
    [15] C. Quemada, G. Bistue, and I. Adin, Design Methodology for RF CMOS Phase Locked Loops, Artech House, 2009.
    [16] K. S. Yeo, M. A. Do, and C. C. Boon, Design of CMOS RF Integrated Circuits and Systems, World Scientific, 2010.
    [17] G. Bianchi, Phase-Locked Loop Synthesizer Simulation, McGraw Hill, 2005
    [18] C. Coleman, An Introduction to Radio Frequency Engineering, Cambridge University Press 2004.
    [19] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, Feb. 1996, pp. 392–393.
    [20] J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
    [21] S.-L. Jang, T.-S. Lee, C.-W. Hsue and C.-W. Chang, ” A low voltage and low power bottom-series coupled quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 11, 722-724, Nov., 2009.
    [22] W.-Z. Chen, C.-L. Kuo, and C.-C. Liu, “10 GHz quadrature-phase voltage controlled oscillator and prescaler,” In Proceed. European Solid-State Circuits Conf., Sep. 2003, pp. 361-364
    [23] S. Lo and S. Hong, “Noise property of a quadrature balanced VCO,” IEEE Microw. Wireless Compon. Lett.,vol. 15, no. 10, pp.673-675, Oct. 2005.
    [24] H.-K. Chen, D.-C. Chang, Y.-Z. Juang, and S.-S. Lu, “A low phase-noise 9-GHz CMOS quadrature-VCO using novel source-follower coupling technique,” IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 851–854.
    [25] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “K- and Q-bands CMOS frequency sources with X-band quadrature VCO,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2789–2800, Sept. 2005.
    [26] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446–448, Oct. 2003.
    [27] T.-H. Huang and Y.-R. Tseng, ” A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. Wireless Compon. Lett., pp. 698-700, Oct., 2008.
    [28] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeter-wave frequency synthesizer for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, pp.2100–2112, Aug. 2009.
    [29] S.-M. Yim and K.K. O, “Switched resonators and their applications in a dual-band monolithic MOS LC-tuned VCO,” IEEE Trans. Microwave Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.
    [30] S.-L. Jang, J.-F. Huang, Y.-S. Lin, and C.-W. Chang, ” Switched inductor dual-band CMOS cross-coupled VCO,” Analog Integr Circ Sig Process., vol. 74, no. 3, pp. 527-532, March, 2013.
    [31] W. Liang, A. Ng, L. Leung, and H. C. Luong, " A 24-GHz and 60-GHz dual-band standing-wave VCO in 0.13μm CMOS process," in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), May. 2010, pp. 145-148
    [32] T.-Y. Lu, and W.-Z. Chen, “A 38/114 GHz switched-mode and synchronous lock standing wave oscillator“, IEEE Microwave Wireless Compon Lett, vol.21, No. 1, pp.40-42, 2011.
    [33] C. F. Chang, and T. Itoh, “A dual-band millimeter-Wave CMOS oscillator with left-handed resonator,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 5, pp. 1401–1409, May 2010.
    [34] D. Ham and W. Andress, “A circular standing wave oscillator,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2004, p. 380.
    [35] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
    [36] S.-L. Jang, D. A. Tu, C.-W. Chang and J.-F. Huang,” Dual-band CMOS voltage-controlled oscillator with comparable outpower at both bands,” Microw. Opt. Technol. Lett. vol. 54, pp.2349-2352, Oct., 2012.
    [37] D. Baek, J. Kim, and S. Hong, “A dual-band (13/22-GHz) VCO based on resonant mode switching,” IEEE Microwave Wireless Compon Lett 13 (2003), 443–445.
    [38] G. Li, and E. Afshari, “A distributed dual-band LC oscillator based on mode switching,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 1, pp. 99–107, Jan. 2011.
    [39] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE Radio Frequency Integrated Circuits Symp, Jun. 2002, pp. 71–74.
    [40] L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do and W. M. Lim, “A 1.8V 2.4/5.15-GHz dual-band LC VCO in 0.18-um CMOS technology,” IEEE Micro. Wireless Compon. Lett., vol. 16, no. 4, pp. 194–196, Apr. 2006.

    無法下載圖示 全文公開日期 2018/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE