簡易檢索 / 詳目顯示

研究生: 蔡培安
PEIR-AN TSAI
論文名稱: 天然橡膠系摻合物之聚集結構、相容性及物性研究
A Study of Aggregate Structure, Miscibility and Physical Properties in a series of Natural Rubber Blends
指導教授: 邱顯堂
Hsien-Tang Chiu
口試委員: 邱士軒
Shih-Hsuan Chiu
李俊毅
Jiunn-Yih Lee
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 122
中文關鍵詞: 木尼粘度環氧化天然橡膠天然橡膠聚丁二烯橡膠氯平乳膠活化能
外文關鍵詞: Mooney viscosity, epoxidized natural rubber, natural rubber, polybutadiene rubber, neoprene latex, activation energy
相關次數: 點閱:593下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  本研究主要針對天然橡膠系(natural rubber;NR)掺合體(NR/BR、ENR/CR)之木尼粘度(Mooney viscosity)、硫化速率(curing rate)、型態學(morphology)、力學性質、熱老化特性及動態機械性質(dynamic mechanical properties)等做一系列探討。並進一步使用氯平(Neoprene;polychloroprene;CR)乳膠(latex)結合傳統的RFL浸漬技術中的間苯二酚(resorcinol)與福馬林(formaldehyde)之縮合體(RF樹脂),做為織物(fabric)與NR/BR 摻合膠之接著處理液。經由不同的CR latex含量與處理條件,來探討CR latex 應用於織物與NR/BR 摻合膠接著(adhesion)之影響效應,從這些研究結果,我們獲得下面結論。
1.NR/BR摻合膠之研究方面:
實驗結果顯示NR具有較低的木尼粘度值,且初期流動性優於BR的初期流動性。另外,NR/BR摻合膠之木尼粘度值隨著NR摻合量增加而傾向具有較低的木尼粘度值,因而藉由NR的摻合而使BR加工性獲得較佳的改進。此外,NR/BR摻合膠的硫化速率因較高的硫化溫度而變得較快,且NR的硫化速率比BR快速。NR/BR摻合膠的焦燒時間(scorch time)與最適加硫時間(optimum cure time)會隨著NR含量增加而減少。另外,在NR/BR摻合膠中,NR的Tαn與BR的Tαb兩特性峰完全分離出現,這意味著NR/BR摻合膠中兩種橡膠是不具有相容性,而且Tαb特性峰隨著NR含量的增加而移動至較低溫範圍出現;同時Tαn特性峰隨著NR含量的減少而移動至較低溫範圍出現。另外,NR的表面顯示出團塊狀(domain status)的分佈,BR表面則顯示出均勻狀(uniform status)的分佈。而NR的斷面(fracture surfaces)形態比BR更平整且均勻。NR/BR摻合膠之抗張強度(tensile strength)與撕裂強度(tear strength)會隨著NR含量的增加而增加。由於BR之壓縮剛性(compression stiffness)較NR之壓縮剛性高,使得BR在相同荷重下之變形較NR小。此外,NR比BR具有較低的透氣性值,亦即是NR氣密性優於BR。而NR/BR摻合膠隨著NR含量之增加而使氣體透過率變為更少,而達到較佳的氣密性。而在老化性質方面, NR/BR摻合膠在延長熱老化時間之後,抗張應力(tensile stress)與抗張應變(tensile strain)均減少。此外,BR應力損失較NR為低,這意味著BR耐熱老化抵抗性質是比NR優異。更進一步地,由於熱歷史的累積,使得NR/BR摻合膠之玻璃轉移溫度(Tg)出現的位置往低溫方向移動,且阻尼(tanδ)也隨熱老化延長而增加。
2.ENR/CR摻合膠之研究方面:
實驗結果顯示ENR/CR摻合膠之木尼粘度隨著ENR含量增加而降低。ENR/CR摻合膠之塑化效應以摻合比為75/25時最為顯著,因而獲得較佳之加工性。在高溫時,由於ENR環氧基團(epoxy group)的開環(ring-opening)反應,使得交聯形成速率比CR快速,導致ENR/CR摻合膠硫化速率隨著ENR含量的增加而增加。經由實驗結果得知,ENR/CR摻合膠最佳的加工條件為溫度175 0C,硫化時間為5分鐘為最佳之加工條件。ENR/CR摻合膠之動態機械分析(DMA)圖顯示出現單一的阻尼特性峰,這意味著ENR摻合CR所形成之摻合膠是具有相容性(miscible)。觀察ENR/CR摻合膠之頻率對Tg所做之阿瑞尼士圖(Arrhenius plot),顯示出ENR/CR摻合膠之活化能隨ENR含量之增加而增加,這意味著兩種橡膠之分子鏈網目間存在著相互作用之結構。
3. NR/BR摻合膠與織物接著之研究方面:
實驗結果顯示織物經CR latex 100 phr配方處理且於不同的乾燥溫度下乾燥後,NR/BR摻合膠以NR100與織物間之剝離強度(peel strength)最高,而NR0(純BR)則最低。織物經CR latex 100 phr配方處理後之乾燥溫度以150℃處理時為最佳。傳統的RFL浸漬液中使用乙烯基砒啶(vinyl pyridine;VP)latex處理織物時,織物對於NR/BR摻合膠之剝離強度最高,並且對於三種不同NR/BR 摻合膠之剝離強度值並無明顯變化。當傳統的RFL浸漬液中使用CR latex系統處理織物時,NR/BR 摻合膠對於織物之剝離強度隨NR含量減少( BR含量增加)與CR latex 含量減少而降低。當使用CR latex系統於RFL接著處理液中,於CR latex中加入架橋劑、促進劑等添加劑可提昇織物與NR/BR摻合膠之剝離強度。


In the study, we research the Mooney viscosity, curing rate, morphologies, mechanical properties, post-thermal aging properties and dynamic mechanical properties of a series of nature rubber blends (NR/BR, ENR/CR). Furthermore, we used Neoprene (polychloroprene; CR) latex with the condensation polymers(RF resin) of resorcinol and formaldehyde in traditional RFL dip technology as the adhesion for fabric and NR/BR blends. Under different CR latex contents and treatment conditions, investigated the influence and effect of using CR latex in the adhesion of fabric and NR/BR blends. From these results, we obtained the following results.
1. The study on NR/BR blends
The experimental results show that NR has a lower Mooney viscosity, and its initial fluidity is superior to that of BR. Moreover, NR/BR blends tend to have lower Mooney viscosity with increasing NR content. Thus, blending of NR leads to good improvement in BR processibility. Curing rate for NR/BR blends becomes faster with higher curing temperature. Furthermore, curing rate of NR is faster than that of BR. Both scorch time (ts2) and optimum curing time (tc90) of NR/BR blends decrease with increasing NR content. In NR/BR blends, the two peaks corresponding to NR’ Tαn and BR’ Tαb are well separated, meaning that NR/BR blends are immiscible. Moreover, Tαb moves to a low temperature range with increasing NR content, while Tαn moves to a low temperature range with decreasing NR content. In addition, NR surface reveals a domain status of distribution, whereas BR surface shows a uniformly dispersed distribution. Moreover, the fracture surfaces of NR are neater and more even than those of BR. Both tensile and tear strengths of NR/BR blends increase with increasing NR content. BR has higher compression stiffness than NR. The deformation of BR is smaller than that of NR under the same load conditions. In addition, NR has lower air permeability than BR; meaning that the air impermeability of NR is superior to that of BR. NR/BR blends become less gas permeable and achieve better air impermeability with increasing NR content. With regard to aging properties, both tensile stress and strain of NR/BR blends decrease after prolonged aging. In addition, the stress loss of BR is lower than that of NR, meaning that the aging resistance property of BR is superior to that of NR. Furthermore, accumulated thermal history has shifted the glass transition temperature (Tg) of NR/BR blends towards lower temperatures while the loss tangent (tanδ) value increases with prolonged thermal aging.
2. The study on ENR/CR blends
The experimental results of ENR/CR blends show that the Mooney viscosity decreased gradually. Plasticization was most pronounced at an ENR/CR ratio of 75/25, and is thus the easiest to process. Owing to the ring-opening of the epoxy group of ENR, the rate of crosslink formation is much faster than that of CR at higher temperature. The vulcanized rate increased with increasing ENR content. The results indicated that 175°C and 5 minutes were the optimum processing conditions for ENR/CR blends. The DMA spectra showed a single damping peak for the ENR/CR blends, which suggests that ENR and CR are miscible. As seen in the Arrhenius plot of frequency against Tg , the activation energy increased with increasing ENR contents. This suggests the existence of interpenetration of these two rubber molecular networks.
3. The study on adhesion of NR/BR blends and textile fabric
The experiment result showed that after the fabric is treated with CR latex 100 phr and dried under different drying temperatures, the peel strength of NR100 was the highest and NR0 (pure BR) was the lowest. The best drying temperature for fabric treated with CR latex 100 phr is at 150℃. For vinyl pyridine (VP) latex used to treat fabric in traditional RFL dipping solution, the peel strength of fabric on NR/BR blends is the highest and showed no significant change on the peel strength values of three different kinds of NR/BR blends. When traditional RFL dipping solution is used with CR latex system to treat fabric, the peel strength of NR/BR blends on fabric decreased as the NR content decreased (BR content increased) and CR latex content decreased. When CR latex system was used in the RFL adhesive treatment solution and additives such as cross-linking agent and catalyst were added into CR latex, the peel strength between the fabric and NR/BR blends was increased.

中文摘要……………………………………………………………..………..……. I 英文摘要…………………………………………………………………..…..…... III 誌謝……………………………………………………………….………..…….. ..VI 圖表索引…………………………………………………………………...…….... XI 第一章 緒論……………………………………………………………………...….1 1.1研究背景及目標….……..……………………………………………….........1 1.2橡膠材料特性…………………………………………………………………2 1.2.1天然橡膠(natural rubber;NR)………………………………………….2 1.2.2環氧化天然橡膠(epoxidized natural rubber;ENR)…………………2 1.2.3聚丁二烯橡膠(polybutadiene rubber;BR)…………………………..3 1.2.4氯平橡膠(neoprene;CR)……………………………………………..4 1.3橡膠之硫化(vulcanization and curing)反應……………………………….4 1.4橡膠的吸能與防振性……………….………………………………..………..5 1.5 NR系橡膠摻合物研究回顧…………….…………………………………….6 1.5.1 NR之摻合物研究回顧……………….…………………………………..6 1.5.2 ENR之摻合物研究回顧………………….………………………………7 1.6紡織織物(textile fabric)之接著處理方法…………………………………8 1.7研究特徵與目的 …………………………….……….………………..….…10 1.8研究架構 ………………………………………..……………………..…….11 1.8.1 NR/BR摻合膠之研究……………………….…………………………11 1.8.2 ENR/CR摻合膠之研究………………………………………………….12 1.8.3 Neoprene(CR)乳膠對於NR/BR摻合膠與織物接著之研究………13 1.9參考文獻 …………………………………………………………………14 第二章 NR/BR摻合膠之流變行為及相容性研究……….…..…………………...21 中文摘要……….……………………………………………….………………..22 英文摘要…………………………………………………………...…………….23 2.1 前言………………………………………………………….…..…………..24 2.2實驗……………………………………………………….……..…………...24 2.2.1混練…………………………………………………….…….…………24 2.2.2木尼粘度………………………………………………………….……...25 2.2.3硫化試驗………………………………………………………....………25 2.2.4摻合膠之硫化……………………………………………….…….…….25 2.2.5硫化膠動態機械性質測試………………………………….…….…….25 2.2.6掃描式電子顯微鏡觀察………………………….…….………………..26 2.3 結果與討論…………………………………………………….….……...…26 2.3.1 NR/BR摻合膠之加工性………………………………….…………….26 2.3.2 NR/BR摻合膠之硫化反應………………………….…………………..26 2.3.3 NR/BR摻合膠之分子運動性…………………………………………..28 2.3.4 NR/BR摻合膠之形態學觀察………………………………….………..29 2.4 結論…………………………………………………………………….…….30 2.5 參考文獻……………………………………………………………….…….32 第三章 NR/BR摻合膠之老化與力學性質研究……………………………….…...51 中文摘要………………………………………………………….……………….52 英文摘要…………………………………………………………….…………….53 3.1 前言…………………………………………………………….……………..54 3.2實驗………………………………………………………….…………...........54 3.2.1混練………………………………………………………….……………54 3.2.2摻合膠之硫化……………………………………….…………..………..55 3.2.3硫化膠之物理性質測試…………………………….…………...……….55 3.2.4硫化膠壓縮變形試驗……………………………………….……………55 3.2.5硫化膠壓縮剛性測定…………………………………….………………55 3.2.6硫化膠氣密性測試……….………………………………………………56 3.2.7 硫化膠之熱老化試驗…………………………………….……….……..56 3.2.8 硫化膠動態機械性質測試………………………………….…….……..56 3.3 結果與討論……………………………………………………….…….…….56 3.3.1 NR/BR摻合膠之力學性能…………………………………….….……..56 3.3.2 NR/BR摻合膠之壓縮剛性及壓縮永久變形…………………...….…….57 3.3.3 NR/BR摻合膠之透氣性分析………………….…………………...…….58 3.3.4 NR/BR摻合膠老化後物性分析……….……………………….…..…….58 3.4 結論…………………………………………………………………..….……59 3.5 參考文獻………………………………………………………………………61 第四章ENR/CR摻合膠之流變行為與相容性研究……………………….………75 中文摘要……………………………………………………………….………….76 英文摘要………………………………………………………………….……….77 4.1 前言…………………………………………………………………….……..78 4.2實驗…………………………………………………………………….……...79 4.2.1混練………………………………………………………………………79 4.2.2木尼粘度…………………………………………………….……………79 4.2.3焦燒時間…………………………………………………………….……79 4.2.4硫化試驗………………………………………………………………….80 4.2.5摻合膠之硫化…………………………………………………………….80 4.2.6動態機械分析...……….………………………………………….……….80 4.2.7活化能………………………………………….………………………...80 4.3 結果與討論………………………………………………….………………..80 4.3.1塑化效應……………………………….…………………..……………..80 4.3.2硫化速率…………………………………………………………..……..81 4.3.3硫化反應……………………………………….………………………..82 4.3.4動態機械分析及相容性…………………………….……………...……82 4.3.5活化能…………………………………………………………………...83 4.4 結論……………………………………………………………….………….84 4.5 參考文獻………………………………………………………………..……85 第五章Neoprene乳膠對於NR/BR摻合膠與織物接著之研究..………....……..100 中文摘要……………………………………………………………………………101 英文摘要……………………………………………………………………………102 5.1 前言………………………………………………………………………….103 5.2實驗…………………………………………………………………………..104 5.2.1織物之表面處理………………………………………………………...104 5.2.2 NR/BR摻合膠的製備……………………………….………………...…...105 5.2.3 試樣製備…………………………………………………..……….………105 5.2.4剝離強度測定………………………………………………….…..……106 5.3 結果與討論………………………………………………………….…..…..106 5.3.1傳統的RFL浸漬技術之接著機構...….…………………………..……106 5.3.2不同處理溫度對剝離強度之影響…………………..…………….…..……106 5.3.3不同乳膠對剝離強度之影響…….……….…………………………….107 5.3.4不同CR latex含量系統對於剝離強度之影響……………….…..….……108 5.4 結論…………………………………………………………….……………108 5.5 參考文獻…………………………………………………...…………..……110 第六章 總結論……………………………………………………………………..117 作者簡介……………………………………………………………………………120 著作目錄…………………………………………………………………….……...121

1. C. Wang, C.I. Chang, Fracture energies and tensile strength of an EPDM/PP thermoplastic elastomer, Journal of Applied Polymer Science, Vol 75 (No.8), 2000, p1033-1044
2. M. Seki, H. Nakano, S. Yamauchi, J. Suzuki and Y. Matsushita, Miscibility of isotactic polypropylene/ethylene-propylene random copolymer binary blends, Macromolecule, Vol 32 (No.10),1999, p3227-3234
3. T. Takahashi, H. Mizuno, E.L. Thomas, Morphology of solution-cast films of polypropylene homopolymer/ethylene-propylene random copolymer blends and polypropylene/ethylene-propylene sequential copolymer, Journal of Macromolecular Science - Physics, Vol 22 (No.3), 1983, p425-436
4. R. Greco, E.Martuscell, G., Ragosta and G., Demma, Thermal and swelling properties of polystyrene-polyolefin blends, Polymer Engineering and Science, Vol 18 (No.8),1978, p654-659
5. C. Markin and H.L. Williams, Polypropylene/abs terpolymer blends. mixing and mechanical properties, Journal of Applied Polymer Science, Vol 25 (No.11), 1980, p2451-2466
6. I.R. Gelling, Modification of natural rubber latex with peracetic acid, Rubber Chemistry and Technology, Vol 58 (No.1), 1985, p86-96
7. C.S.L. Baker, I.R. Gelling and R. Newell, Epoxidized natural rubber, Rubber Chemistry and Technology, Vol 58 (No.1), 1985 , p67-85
8. A.K. Gupta and S.N. Purwar, Crystallization of pp in pp/sebs blends and its correlation with tensile properties, Journal of Applied Polymer Science, Vol 29 (No.5), 1984 , p1595-1609
9. P.J. Corisch, Fundamental studies of rubber blends, Rubber Chemistry and Technology, Vol 40 (No.2), 1967, p324-340
10. I.Y. Zlatkevich and V.G. Nikolskii, Dependence of the glass transition temperature on the composition of elastomer mixtures, Rubber Chemistry and Technology, Vol 46 (No.5), 1973 , p1210-1217
11. E.N. Kresge, Polyolefin thermoplastic elastomer blends, Rubber Chemistry and Technology, Vol 64 (No.3), 1991, p469-479
12. J.H. Lee, J. K. Lee, K. H. Lee and C.H. Lee, Phase separation and crystallization behavior in extruded polypropylene/ethylene-propylene rubber blends containing ethylene-α-olefin copolymers, Polymer Journal, Vol 32 (No.4), 2000 , p321-325
13. T. Nomura, T. Nishio, H. Sato and H. Sano, Structure of super olefine polymer, Kobunshi Ronbunshu/Japanese Journal of Polymer Science and Technology, Vol 50 (No.2), 1993, p87-91 (in Japanese)
14.T.Murayama, Molecular interpretation: polymer blends and copolymer, Dynamic
Mechanical Analysis of Polymeric Materials Science Monographs, Elsevier Scientific
Pub. Co., New York, 1978, p89-93
15. I.G. Gelling, Rubber Chemistry Technology, Vol 58 (No.1), 1985, p86
16. R.S. Hanmer and W.T. Cooper, Rubber Age, Vol 89 (No.6), 1961, p963
17. J.A. Brydson, Rubber materials and their compounds, Elsevir science pub., New
York, 1988, p 206-220
18. F.W. Barlow, Rubber Compounding:Principles, Materials and Techniques, Marcel Dekker, Inc., New York, 1993, p48-53
19.呂清保,橡膠工業, Vol 18 (No.4), 1994, p6
20.郭宏吉,橡膠工業, Vol 18 (No.5), 1994, p4
21. L.G. Hernandez, L.I.Rueda, A.R.Diz and C.C.Anton , Polymer, Vol 33 (No.17), 1992, p3635
22. I.R. Gelling and N.J. Morrison, Rubber Chemistry Technology, Vol 58 (No.2), 1985, p243
23.A.K. Bhowmick and S.K. De, Rubber Chemistry Technology, Vol 53 (No.4), 1980,
p960
24.L.S. Porter, Rubber Chemistry Technology, Vol 53 (No.5), 1980, p1133
25.A.R.Payna, Rubber Chemistry Technology, Vol 37 (No.5), 1964, p1190
26.J.C.Sanowdon, Rubber Chemistry Technology, Vol 53 (No.5), 1980, p1041
27.H.R.Ahmadi and A.H.Muhr, International Journal of Materials and Product Technology, Vol 7 (No.1), 1992, p65
28.J.Harris and A.Stevenson, Rubber Chemistry Technology, Vol 59 (No.5),1986, p740
29.A.R.Payne and R.E. Whittaker, Rubber Chemistry Technology, Vol 44 (No.3), 1971, p440
30.A.I. Medalia, Rubber Chemistry Technology, Vol 51 (No.3), 1978, p437
31.J.D. Ferry, Rubber Chemistry Technology, Vol 55 (No.5), 1982, p1403
32.A.Voet and F.R. Cork, Rubber Chemistry Technology, Vol 41 (No.5), 1968, p1215
33. S.H. Botros, Polymer-Plastics Technology and Engineering, Vol 41 (No.2), 2002, p341-359
34. M.A. Semsarzadeh and G.R.Bakhshandeh, Iranian Polymer Journal, Vol 14 (No.6), 2005, p573-578
35. J.R. Yoon, A.S. Hashim and N. Kawabata, Rubber World, Vol 213 (No.4), 1996, p20-24
36. J.M. Massie,A.F. Halasa, Journal Applied Polymer Science, Vol 66 (No.2), 1993, p276-285
37. S.H. Botros, Journal Applied Polymer Science, Vol 82 (No.12), 2001, p3025-3057
38. C. Lewis, S. Bunyung and S. Kiatkamjornwong, Journal Applied Polymer Science, Vol 89 (No.3), 2003, p837-847
39. J. Clarke, B. Clarke and P.K. Freakley, Plastics, Rubber and Composites, Vol 30 (No.1), 2001, p39-44
40. N. Suma, R. Joseph, International Journal of Polymer Materials, Vol 21 (No.3-4),1993, p127-135
41. B. Jurkowska, Y.A.Olkhov and B. Jurkowski, Journal Applied Polymer Science, Vol 75 (No.5), 2000, p660-669
42.C.L. Matteo, J.J. Gonzalez and J.G. Tischler, KGK Kautschuk Gummi Kunststoffe, Vol 48 (No.3), 1995, p166-172
43. A.K. Bhowmick and S.K. De, Rubber Chemistry and Technology, Vol 53 (No.4), p962-974
44. Sung-Seen Choi, Journal Applied Polymer Science, Vol 75 (No.11), 2000, p1378-1384
45.S.A. Groves, Rubber Chemistry and Technology, Vol 71 ( No.5) , p958-965
46.D.F. Castro, Regina C.R.Nunes and Leila L.Y. Visconte, Journal Applied Polymer Science, Vol 94 (No.4), 2004, p1575-1585
47.S.H. Chough and D.H Chang, Journal Applied Polymer Science, Vol 61 (No.3), 1996, p449-454
48.D.J. Hourston and M.Song, Journal Applied Polymer Science, Vol 76 (No.12), 2000, p1791-1798
49.A.A.Yehia and A.A.Mansour, Journal Thermal Analysis, Vol 48 (No.6), 1997, p1299-1310
50.M.G.Huson and W.J.Mcgill, Plastics and Rubber Processing and Applications, Vol 5 (No.4), 1985, p319-324
51. A.A. Yehia, F.M. Helaly and S.H. Elsabbagh, Journal of Elastomers and Plastics, Vol 24 (No.1), 1992, p15-25
52. S. Bualek, Y.Ikeda and S. Kohjiya, Journal Applied Polymer Science, Vol 49 (No.5), 1993, p807-814
53. D.J. Zanzig and F.L.Magnus, Rubber Chemistry and Technology, Vol 66 ( No.4) , p539-549
54.J.Z.Liang, Polymer Testing, Vol. 23 (No.1),2004, p77-82
55.W.M.Hess and P.C. Vegvari, Rubber Chemistry and Technology, Vol 58 ( No.2) , p350-382
56. W.M.Hess and V.E. Chirico, Rubber Chemistry and Technology, Vol 50 ( No.2) , p301-326
57. N.M. Mathew and S.K. De, Journal Materials Science, Vol 18 (No.2), 1983, p515-524
58. C. Nah and S. Kaang, Journal Applied Polymer Science, Vol 68 (No.9), 1998, p1537-1541
59. G.R. Hamed and H.J. Kim, Rubber Chemistry and Technology, Vol 72 ( No.5) , p985-909
60. M.P. Lee and A. Moet, Rubber Chemistry and Technology, Vol 66 ( No. 2) , p304-316
61. P.B. Sulekha and K.N. Madhusoodanan, Polymer Degradation and Stability, Vol 77 (No.3), 2002, p403-416
62. F. Gharavi and A.A. Katbab, Progress in Rubber and Plastics Technology, Vol 6 (No.2), 1990, p129-158
63. A. Vieira and C.R. Regina, Polymer Bulletin, Vol 36 (No.6), 1996, p759-766
64. A. Klasek and E. Filipovicova, Journal Applied Polymer Science, Vol 81 (No.6), 2001, p1439-1433
65. A.Yan and Z. Guo, Radiation Physics and Chemistry, Vol 63 (No.3-6), 2002, p497
-500
66. Rubber Development, Vol 46 (No.3-4), 1993, p49
67.J.C. Cizravi and C. Naginlal, Journal Applied Polymer Science, Vol 73 (No.9), 1999, p1633-1644
68. Rubber Development, Vol 44 (No.2-3), 1991, p63
69.B.T. Poh and C.S. Te, Journal Applied Polymer Science, Vol 74 (No.12), 1999, p2940-2946
70. Z.A.M. Ishak and A.A. Bakar, European Polymer Journal, Vol 31 (No.3), 1995, p259-269
71.M. Zhao and J. Qu, Meitan Xuebao/Journal of China Coal Society, Vol 24 (No.6), 1999, p648-651
72. H.A. Afifi and A.M. EI Sayed, Polymer Bulletin, Vol 50 (No.1-2), 2003, p115-122
73. H. Ismail and B.T. Poh, European Polymer Journal, Vol 36 (No.11), 2000, p2403-2408
74. B.T. Poh and H. Ismail, Polymer Testing, Vol 21 (No.7), 2002, p801-806
75. B.T. Poh and K.S. Tan, Polymer International, Vol 52 (No.5), 2003, p685-691
76. B.T. Poh and H. Ismail, Polymer Testing, Vol 20 (No.4), 2001, p389-394
77. B.T. Poh and H. Ismail, Journal Applied Polymer Science, Vol 81 (No.1), 2001, p47-52
78. H. Ismail and H.C. Leong, Polymer Testing, Vol 20 (No.5), 2001, p509-516
79. K.K. Byung and H.K. In, Plastics and Rubber Processing and Applications, Vol 32 (No.3), 1993, p167-180
80. C. Metherell, Cellular Polymers, Vol 12 (No.3), 2005, p194-206
81. C.T. Ratnam and K. Zaman, Polymer Degradation and Stability, Vol 65 (No.1), 1999, p99-105
82. C.T. Ratnam and M. Nasir, Polymer-Plastics Technology and Engineering, Vol 40 (No.4), 2001, p561-575
83. U.S. Ishiaku and F.S. Lim, Polymer-Plastics Technology and Engineering, Vol 38 (No.5), 1999, p939-954
84. Rubber Development, Vol 45 (No.4), 1992, p85
85. C.T. Ratnam, Polymer Testing, Vol 21 (No.1), 2002, p93-100
86. C.T. Ratnam and K. Zaman, Polymer Degradation and Stability, Vol 65 (No.3), 1999, p481-490
87. C.T. Ratnam, Plastics, Rubber and Composites, Vol 30 (No.9), 2001, p416-420
88. N. K. Porter, Journal of coated fabrics, Vol 21 ,1992, p230
89. N. K. Porter, Journal of coated fabrics, Vol 23, 1993, p34
90. T. Takeyama and J. Matsui., Rubber Chemistry and Technology, Vol 42, 1969, p159.
91. A.V. Dedov and E.S. Bokova, Kauchuki Rezina, No.4, 2005, p14-16
92. A.V. Dedov, Kauchuki Rezina, No.3, 2003, p11-12

無法下載圖示 全文公開日期 2011/01/24 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE