研究生: |
邱婉玲 Wan-Ling Chiou |
---|---|
論文名稱: |
飛秒雷射加工創新研究-內部結構型擴散片與矽基板裂片應用 Creative Research of Femtosecond Laser Processing-Internal Diffuser in PMMA and Silicon Wafer Dicing |
指導教授: |
鄭正元
Jeng-Ywan Jeng 張復瑜 Fuh-Yu Chang |
口試委員: |
林其禹
Chyi-yeu Lin 汪家昌 Jia-Chang Wang |
學位類別: |
碩士 Master |
系所名稱: |
工程學院 - 機械工程系 Department of Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 127 |
中文關鍵詞: | 飛秒雷射加工 、雷射內部加工 、PMMA 、光擴散片 、矽晶圓裂片 |
外文關鍵詞: | femtosecond laser, internal processing, PMMA, light diffuser, silicon wafer dicing |
相關次數: | 點閱:583 下載:14 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
飛秒雷射具有超短脈衝以及光能量密度極高的特性,且擁有特殊的光化學材料剝離機制。這些特性使其有別於一般雷射而有加工熱影響區小、加工尺寸精密度高、以及熱應力低所帶來的內部加工優勢。利用這些特點,本研究以飛秒雷射進行內部結構光擴散片加工與矽晶圓裂片加工兩部份的創新應用研究。
內部加工所製作之光學元件相較於一般的表面加工,具有結構不磨損、不易產生加工粉塵、元件間結合貼附容易且緊密性良好之優勢。本研究成功利用飛秒雷射在透明材料PMMA中製做內部光學擴散片,並對其進行光學性質之量測。矽晶圓裂片部分,利用飛秒雷射無熱精密加工之特性,直接於矽晶片表面進行加工造成切口以利裂片。結果顯示除可使表面加工線寬縮至5μm以下、讓其切割道極小化以提升晶片產能外,更具有加工粉塵易清除以及裂口平整之優點。
本研究以飛秒雷射加工成功驗證了內部光學擴散片和矽晶圓裂片之兩種創新加工法,不僅符合輕薄短小之微奈米加工需求,更對半導體、光電能源與影像顯示等領域之應用提供一個重要的方向。
The femtosecond laser is categorized as ultra-short pulse laser. In contrast to general laser, femtosecond laser is characterized with high energy density and specific mechanism of photochemical material peeling. Moreover, it has the advantages of trivial heat-affected-zone, high precision machining, and the capability of internal processing on transparent materials due to its low thermal stress. Based on these benefits, two typical issues, internal light diffuser, and silicon wafer dicing, with the use of femtosecond laser were studied.
The internal structure has durable, dust-free, and excellent adherent characteristics. In this study, a PPMA internal light diffuser was successfully manufactured, and the relative optical properties were measured and well discussed. On the other hand, for silicon wafer dicing, this study chose using femtosecond laser to carve directly on the wafer surface instead of in the interior, because of the low thermal stress characteristic. Results showed that the advantages of femtosecond laser surface dicing including not only the sub-5m groove width, which means the wafer productivity could then be enhanced, but also the smooth cross-sectional surface and dust could be easily removed.
Both the results on these two categories confirmed the potentiality of femtosecond laser applications in micro-scaled machining, like semiconductor, photovoltaic, and image display.
1. J. Hecht, The Laser Guidebook, 2nd Edition, McGraw-Hill,Inc., California,
Chapter2 (1992)
2. http://elearning.stut.edu.tw/m_facture/ch5.htm
(教育部高工機械精密製造科進修網站)
3. http://www.cmxr.com/applicationprofiles/index.htm (Clark-MXR, Inc.)
4. Lambda Highlights, No. 18 ( 1989)
5. Y. Shimotsuma and K. Hirao, “Nanofabrication in transparent materials with
a femtosecond pulse laser,” J. Non-Cryst. Solids, Vol.352, pp.646-656(2006)
6. J. Kroger and W. Kautek, “Ultrashort Pulse Laser Interaction with
Dielectrics and Polymers,” Adv. Poly. Sci., Vol.168,pp.247-289 (2004)
7. 朱旭新、陳聿昕、汪治平、李超煌、陳賜原, “十兆瓦超短脈衝雷射系統”,科儀新
知,128期5-18頁。 (2002)
8. A. Vaidyanathan, T. W. Walker and A. H. Guenther, “The relative roles of
avalanche multiplication and multiphoton absorption in laser-induced damage
of dielectrics,” IEEE J.Quantum Elect., Vol.16, pp.89-93 (1980)
9. M. Ams, G. D. Marshall, P. Dekker, M. Dubov and V. K. Mezentsev,
“Investigation of Ultrafast Laser-PhotonicMaterial Interactions: Challenges
for Directly Written Glass Photonics,” IEEE J. Quantum Elect., Vol.14,
No.5, pp.1370-1381 (2008)
10. E. G. Gamaly, A. V. Rode and B. Luther-Davies, “Ablation of solids by
femtosecond lasers: Ablation mechanism and ablation thresholds for metals
and dielectrics,” Phys. Plasmas, Vol.9, No.3, ( 2002)
11. K.Watts and Pieterse, “Picosecond and Femtosecond Pulse Generation in a
Regeneratively Mode-Locked Ti: Sapphire Laser,” IEEE J. Quantum Elect.,
Vol.28, pp.2151-2162 (1992)
12. C. B. Schaffer, A. Brodeur, José F. García and E. Mazur, “Micromachining
bulk glass by use of femtosecond laser pulses with nanojoule energy,”
Opt. Lett., Vol.26, No.2 (2001)
13. http://www.fpd.edu.tw/entry/content!newsView.htm?id=1458
(影像顯示科技人才培育網)
14. http://www.disco.co.jp/cn_t/index.html (DISCO Corporation)
15. 丁勝懋,雷射工程導論,中央圖書出版社,第四版。 (1995)
16. 張國順、鄭壽昌,現代雷射製造技術,新文京開發出版股份有限公司。 (2008)
17. K. Venkatakrishnan, B. Tan, and B. K. A. Ngoi, “Submicron holes in copper
thin film directly ablated using femtosecond pulsed laser, ” Opt. Eng.,
Vol.40, No.12, pp.2892-2893 (2001)
18. http://www.onset-eo.com/big5/n_products/optics_&_materials/
product_catalog_optical_&_materials_products3-54.htm
(銓州光電股份有限公司)
19. C. Florea and K. A. Winick, “Fabrication and characterization of photonic
devices directly written in glass using femtosecond laser pulses,” J.
Lightwave Technol., Vol. 21, pp. 246-253 (2003)
20. Y. Shen, The Principles of Nonlinear Optics, John Wiley & Sons, Inc., New
York (1984)
21. S. Baudach, J. Bonse, J. Krueger and W. Kautek, “Ultrashort pulse laser
ablation of polycarbonate and polymethylmethacrylate,” Appl. Surf. Sci.,
pp.555-560 (2000)
22. J. Bonse, S. Baudach, J. KrUger and W. Kautek,“Femtosecond laser
micromachining of technical materials,” P. Soc. Photo-Opt. ins., Vol.4065
(2000)
23. J. Bonse, P. Rudolph, J. Krueger, S. Baudach, and W. Kautek, “Femtosecond
pulse laser processing of TiN on silicon,” Appl. Surf. Sci., 154-155:
pp.659-663 (2000)
24. Alexander M. Streltsov and Nicholas F. Borrelli, “Fabrication and
analysis of a directional coupler written in glass by nanojoule
femtosecond laser pulses,” Opt. Lett., Vol.26, No.1 (2001)
25. J. Meijerl,K.Du, A. Gillner3, D. Hoffmann3, V. S. Kovalenko4, T. Masuzawa,
A. OstendorfG, R. Poprawe3 and W. Schulz, ”Laser Machining by short and
ultrashort pulses state of the art and new opportunities in the age of the
photons,” Manufacturing Technology, Vol.51, pp.531-550 ( 2002)
26. Y. ITO, S. KIYOKU, T. OGURA, N. MOHRI, ”Dynamical Observation of Laser-
induced Damages Made in Inside of Transparent Materials,” SPIE, Vol.
4426, pp.62-65 (2002)
27. M. Meuniera, B. Fisettea, A. Houlea, A. V. Kabashina, S. V. Broudeb and P.
Millerb, “Processing of metals and semiconductors by a femtosecond laser-
based microfabrication system,” Proceedings of SPIE, Vol.4978 (2003)
28. I. Sohn, M. Lee, S. Jee, “Fabrication of Photonic Devices Directly
Written in Glass Using Femtosecond Laser Pulses,” SPIE, Vol.5662, pp.190-
192 (2004)
29. K. Ohta, M. Kamata, M. Obara, “Optical Waveguide Fabrication in New
Glasses and PMMA with Temporally Tailored Ultrashort Laser,” SPIE,
Vol.5340, pp.172-178 (2004)
30. D. V. Tran, Y. C. Lam, H. Y. Zheng, V. M. Murukeshan, J. C. Chai and D. E.
Hardt, ”Femtosecond laser processing of crystalline silicon,”
Proceedings of The 5th Singapore-MIT Alliance Annual Symposium Singapore
(2005)
31. S. Nikumba, Q. Chena, C. Lia, H. Reshefa, H. Y. Zhengb, H. Qiub, D.
Lowb, ” Precision glass machining, drilling and profile cutting by short
pulse lasers,” Thin Solid Films, Vol.477, pp.216– 221 (2005)
32. A. Baum, P. J. Scully, M. Basanta, C. L. Paul Thomas,P. R. Fielden, and N.
J. Goddard, ” Photochemistry of refractive index structures in poly
(methylmethacrylate) by femtosecond laser irradiation,” Opt. Lett.,
Vol.32, No.2, pp190-192 ( 2007)
33. M. Hughes, W. Yang and D. Hewak, ”Fabrication and characterization of
femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys.
Lett., Vol.90, No.131-113 (2007)
34. S. Cho, W. Chang, J. Kim, K. Kim,and J. Wook Hong, ”Fabrication of
internal diffraction gratings in planar fluoride glass using low-density
plasma formation induced by a femtosecond laser,” Appl. Surf. Sci.,
Vol.255, Issue 5, Part 1, pp.2069-2074 (2008)
35. I. N. Zavestovskaya, P. G. Eliseev Oleg, N. Krokhin, Natalia A. and Men’
kova, ”Analysis of the nonlinear absorption mechanisms in ablation of
transparent materials by high-intensity and ultrashort laser pulses,”
Appl. Phys. A, Vol.92, pp.903-906 (2008)
36. H. P. Kuo, M. Y. Chuang and C. C. Lin, ”Design correlations for the
optical performance of the particle-diffusing bottom diffusers in the LCD
backlight unit ,” Powder Technol., Vol.192, pp.116–121 ( 2009)
37. R. E. Samad, L. C. Courrol, A. B. Lug ao, A. Z. Freitas and N. D.Vieira
Junior, “Production of color centers in PMMA by ultrashort laser
pulses,” Radiation Physics and Chemistry, Vol.79, pp.355-357 (2010)
38. http://jp.hamamatsu.com/products/semicon-fpd/pd393/L9570-01/inde
x_en.html#AnimationGallery (HAMAMATSU Corporation)
39. K. Ke, E. Hasselbrink and Alan J. Hunt, “Nanofabrication with ultrafast
lasers at critical intensity,” Proceedings of SPIE, Vol.5714 (2005)
40. W. Wang, X. Mei and G. Jiang, “Control of microstructure shape and
morphology in femtosecond laser ablation of imprint rollers,” Int. J.
Adv. Manuf . Technol., Springer-Verlag London Limited (2008)
41. 林忠緯,雷射加工矽晶圓表面微結構之研究,國立中正大學機械研究所碩士論文。
(2006)
42. 杜柏賢,飛秒雷射之無熱加工創新研究心臟血管支架、玻璃內部光柵與裂片,國立台
灣科技大學機械工程學系研究所碩士論文。(2009)
43. 黃欣怡,雷射精密加工於常用工程材料之研究,台灣大學機械工程學系研究所碩士論
文。 (2006)
44. 陳文照、曾春風、游信和(譯),材料科學與工程導論,高立圖書有限公司。 (2006)
45. L. H. Van Vlack, Elements of Mate rials Science, Addison-Wesley
(1980)
46. Standard Test Method for Haze and Luminous Transmittance of Transparent
Plastics (2008)
47. http://www.recyclesources.com.tw/usersite/ (旭丞光電股份有限公司)
48. M. Li, “以雷射微機械加工來滿足業界的需求”,半導體科技, No.41。 (2003)
49. http://www.disco.co.jp/cn_t/solution/library/laser.html (DISCO)
50. T. Brabec and F. Krausz, “Intense few-cycle laser fields: Frontiers of
nonlinear optics,” Rev. Mod. Phys.,Vol.72, No.2 (2000)
51. 工業技術研究院南分院-雷射應用科技中心,飛秒雷射實驗設備基礎訓練課程,工業技
術研究院-南分院。(2010)