簡易檢索 / 詳目顯示

研究生: 張國棟
Kuo-tung Chang
論文名稱: 受自激振盪射流調制之V型鈍體尾流
Wake Flow of Vee-Shaped Bluff Body Modulated by Fluid Oscillation
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 趙振綱
none
蘇裕軒
none
楊鏡堂
none
陳炳煇
none
孫珍理
none
陳明志
none
游明輝
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 255
中文關鍵詞: 自激振盪尾流流體控制動態孔達效應
外文關鍵詞: fluidic oscillation, wake, flow control, dynamic Coanda effect
相關次數: 點閱:195下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究發展出一種利用動態孔達效應而形成交互振盪噴流以調制尾流特性的V型鈍體。面對著V型鈍體的開口,裝置一個特殊設計的新月型曲面標靶物,經適當而技巧的調整幾何安排,使得進入狹縫的噴流產生自激振盪。將產生自激振盪的射流,導入特殊設計的流道,再注入V型鈍體的尾流區中,形成交替而週期性的噴流,能夠有效調制尾流區的特性。影響流體振盪的主要參數包括:新月形曲面曲率半徑、新月形曲面曲率中心與標靶物虛頂點的偏移距離與雷諾數。由於自激振盪而形成交替噴射流體的注入,振盪器在尾流區中可以偵測到兩種型態的不穩定波:一種是高頻率的射流振盪(此一頻率與狹縫噴流的自激振盪頻率相同),另一種是低頻率的渦旋流逸(此一渦旋流逸與閉口的V型鈍體及前端開口的V型鈍體之尾流區渦旋流逸是相似的)。本研究所發展出來自激振盪器的流體振盪頻率換為史卓數可以達到0.56,為一般利用振盪原理應用在標靶型流量計史卓數的60倍,比用於熱傳增強器的振盪器多約80倍。此史卓數的提升可歸因於振盪器新月形曲面孔穴的特殊幾何設計。流體振盪器尾流區的平均紊流強度會比閉口V型鈍體及前端開口的V型鈍體尾流區分別增加18.6%及5.8%。高頻振盪的狹縫噴流射入低頻的尾流中,射流振盪在流動方向的渦旋長度尺度,只有渦旋流逸長度尺度的5%左右。紊流的時間與長度尺度也會大幅的減小,尾流區中振盪噴流可以增加渦旋的拉伸衍化,有助於紊流動能的增加,由於渦流在剪流層的拉伸增加效應,流體振盪器尾流區的紊流長度尺度比V型鈍體尾流區小約10倍左右。為了更清楚了解射流振盪器的物理機制與發展更高性能的射流振盪尾流混合器,本研究另外進行一個水洞實驗,以質點軌跡視流法與PIV量測,研究強制射流振盪器的振盪行為與射流對尾流流場的影響。強制射流振盪器在曲面腔室中也會產生振盪。基本上兩種振盪的機制是相同的,只是強制射流的控制與用途可以更廣。為了增強尾流區的混合效果,在交替振盪的射流出口處,加裝折射擋板將振盪的噴流導引到尾流流場內部,結果對於尾流流場的動量、紊流強度與剪應力分佈的均勻度皆會有大幅的提昇。經由折射擋板折射角度的調整,可以有效控制尾流迴流長度,紊流的長度尺度也會因折射角增大而變小,證明此一折射擋板技術對尾流紊流特性的調制有很大的功能。


    The vee-shaped fluidic oscillator is developed by inserting a target blockage with a specially designed crescent surface into the downstream cavity of a slit vee-gutter. Stable, self-sustained, periodic fluidic oscillations can be induced by the dynamic Coanda effect when the geometric parameters of the target blockage and the Reynolds number are properly tuned. The fluidic oscillations are directed through two slit passageways and injected into the near wake of the vee-shaped fluidic oscillator like the pulsing jets. The oscillation behaviors, frequency selection, streamline patterns, and turbulence properties of the unsteady flows in the near wakes of the vee-shaped fluidic oscillator are studied experimentally in a wind-tunnel by using the smoke-wire flow visualization technique, hot-wire anemometer, and laser Doppler velocimeter. Flow fields of the slit vee-gutter and the closed-tip vee-gutter, which are the counter parts of the vee-shaped fluidic oscillator, are measured as well for comparisons. The Strouhal number of the fluidic oscillation based on the slit width of the presently developed oscillator can attain about 0.56 at large Reynolds numbers, which is about 80 times larger than the previous results for the enhancement of heat transfer and about 60 times larger than that for the fluidic flowmeter. The fluidic oscillations act as an excitation source to the wake. The kinetic energy of the fluidic oscillations is transferred to turbulent fluctuations and therefore causes increases in the size of the recirculation bubble and the turbulence intensity in the wake of the vee-shaped fluidic oscillator. The turbulence intensity in the near wake can be increased by about 7% when compared with that of the closed-tip vee-gutter. In order to further enhance the understanding and to increase the functionality of the developed fluidic oscillator, the particle tracking flow visualization method (PTFV) and the particle image velocimetry (PIV) are employed to diagnose the flow field in the forced fluidic oscillator. The experiments are conducted in a water tunnel. The Reynolds number ranges from 1332 to 2333. The forced fluidic oscillator is made of transparent acrylic so that the flow visualization and the PIV measurements are possible. The time-evolving instantaneous and time-averaged flow and streamline patterns are obtained. The statistical properties of the turbulence, e.g., the probability density function, autocorrelation coefficient, power spectrum density function, time and length scales of the turbulence, turbulence intensity, shear stress, vorticity, are extracted from the measured raw data of the PIV experiments. A technique of jet-deflection-plate is developed to control the injection path and excitation situation of the oscillation jets on the wake flow. The results reveal that the vee-shaped fluidic oscillator with the installation of the jet-deflection-plate can effectively modulate both the small-scale, large-scale flow structure and the turbulence.

    中文摘要 英文摘要 誌謝 目錄 符號索引 表圖目錄 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 研究目的 第二章 實驗方法、設備與儀器 2.1 實驗方法 2.2 風洞實驗設備與儀器 2.2.1 風洞 2.2.2 皮托管與壓力轉換器 2.2.3 V型鈍體模型 2.2.4流場可視化-強光源光頁輔助煙線流場觀察法 2.2.5熱線風速儀 2.2.6雷射都普勒測速儀 2.2.7移動機構 2.3水洞實驗設備與儀器 2.3.1水洞 2.3.2強制射流振盪器 2.3.3雷射光頁 2.3.4質點特性分析 2.3.5質點軌跡流場觀察法 2.3.6 質點影像速度儀(PIV (Ⅰ) PIV系統介紹 (Ⅱ) PIV系統硬體架構 (Ⅲ) PIV系統軟體架構 2.3.7 時間平均 第三章 傳統V型鈍體之流場 3.1 V型鈍體有效長度 3.2 V型鈍體尾流區渦旋流逸特徵模態與特徵區域 3.2.1 煙線流場特徵模態 3.2.2 剪流層不穩定波特徵模態 3.2.3 尾流區渦旋流逸特徵模態 3.3 鈍體尾流區渦旋流逸頻率特性 3.3.1 渦旋流逸頻率的理論解析 3.3.2 頻率特性 3.3.3不同鈍體寬度對史卓數之影響 第四章 自然進氣振盪器之流場特性 4.1 煙線流場模態與特徵區域 4.1.1 煙線模態 4.1.2 煙線模態特徵區域 4.2 自然進氣振盪頻率 4.2.1射流振盪器振盪頻率 4.2.2 閉口V型鈍體振盪頻率 4.2.3 射流振盪器與閉口V型鈍體振盪頻率的比較 4.3 一維熱線風速儀量測的尾流流場特性 4.3.1 鈍體尾流紊流尺度之統計分析 4.3.2 鈍體尾流平均速度場分析 4.4 二維雷射都普勒測速儀量測尾流流場特性 4.4.1 流線模態與流泡長度 4.4.2 鈍體尾流平均速度場分析 4.4.3鈍體尾流渦度場分析 4.4.4鈍體尾流紊流強度分析 4.4.5鈍體尾流剪應力分析 第五章 強制射流振盪器之流場特性 5.1 強制射流質點軌跡模態與特徵區域 5.1.1 質點軌跡模態 5.1.2 質點軌跡特徵區域 5.2 以質點軌跡視流法量測強制射流振盪器之特性 5.2.1 強制射流振盪器曲面腔室的振盪頻率 5.2.2 無折射擋板強制射流振盪器的尾流流場 5.2.3 有折射擋板強制射流振盪器的尾流流場 5.2.4 折射擋板長度對尾流流場的影響 5.2.5 強制射流自激振盪與尾流區振盪的關係 5.3 PIV量測強制射流振盪對尾流流場的影響 5.3.1尾流流場內部交替振盪射流衍化過程 5.3.2尾流流場速度分量與樣本平均次數的關係 5.3.3 交替振盪射流尾流流場內部渦度分析 5.3.4 交替振盪射流尾流流場紊流尺度之統計分析 5.3.5交替振盪射流對尾流流場特性分析 第六章 結論與建議 6.1 結論 6.2 建議 參考文獻

    [1]Hertzberg, J. R., Shepherd, I. G., and Talbot, L., “Vortex Shedding behind Rod Stabilized Flames,” Combustion and Flame, Vol. 86, No. 1, 1991, pp. 1-11.
    [2]Popiel, C. O. and Turner, J. T., “Visualization of High Blockage Flow behind a Flat Plate in a Rectangular Channel,” Journal of Fluids Engineering, Vol. 113, No. 1, 1991, pp. 143-146.
    [3]Beer, J. M. and Chigier, N. A., “Modeling of Double Concentric Burning Jets,” Ninth Symposium (International) on Combustion, Academic, New York, 1963, pp. 892-900.
    [4]Roquemore, W. M., Tankin, R. S., Chiu, H. H., and Lottes, S. A., “A Study of a Bluff-Body Combustor Using Laser Sheet Lighting,” Experiments in Fluids, Vol. 4, No. 4, 1986, pp. 205-213.
    [5]Fujii, S. and Eguchi, K., “A Comparison of Cold and Reacting Flows around a Bluff-Body Flame Stabilizer,” Journal of Fluids Engineering, Vol. 103, No. 2, 1981, pp. 328-334.
    [6]Fujii, S., Gomi, M., and Eguchi, K., 1978, “Cold Flow Tests of a Bluff-Body Flame Stabilizer,” Journal of Fluids Engineering, Vol. 100, No. 3, 1978, pp. 323-332.
    [7]Stwalley, R. M. and Lefebvre, A. H., “Flame Stabilization Using Large Flameholders of Irregular Shape,” Journal of Propulsion, Vol. 4, No. 1, 1988, pp. 4-13.
    [8]Yang, J. T., Tsai, G. L., and Wang, W. B., “Near-Wake Characteristics of Various V-Shaped Bluff-Body,” Journal of Propulsion and Power, Vol. 10, No. 1, 1994, pp. 288-294.
    [9]Yang, J. T., Yen, C. W., and Tsai, G. L., “Flame Stabilization in the Wake Flow behind a Slit V-Gutter,” Combustion and Flame, Vol. 99, No. 2, 1994, pp. 288-294.
    [10]莊書豪,林正光,郭正雄,引導燃燒器對後燃器內流場影響之研究,國科會計畫報告,1993.
    [11]King, R., “A Review of Vortex Shedding Research and Its Application,” Ocean Engineering, Vol. 4, No. 3, 1977, pp. 141-171.
    [12]Griffin O. M., “Universal Similarity in the Wakes of Stationary and Vibrating Bluff Structures,” Journal of Fluids Engineering, Vol. 103, No. 1, 1981, pp. 52-58.
    [13]Griffin O. M., “Vortex Shedding from Bluff Bodies in a Shear Flow: a Rreview,” Journal of Fluids Engineering, Vol. 107, No. 3, 1985, pp. 298-306.
    [14]Motallebi, F. and Norbury, J. F., “The Effect of Base Bleed on Vortex Shedding and Base Pressure in Compressible Flow,” Journal of Fluid Mechanics, Vol. 110, 1981, pp. 273-292.
    [15]Brooks, T. F. and Schlinker, R. H., “Progress in Rotor Broadband Noise Rresearch,” Vertica, Vol. 7, 1983, pp. 287-307.
    [16]Longwell, J. P., “Flame Stabilization by Bluff Bodies and Turbulent Flames in Ducts,” 4th International Symposium on Combustion, 1952, pp. 90-97.
    [17]William, G. C., Hottel, H. C. and Scurlock, A. C., “Flame Stabilization and Propagation in High Velocity Gas Stream,” 3rd Symposium on Combustion and Flame and Explosion Phenomena, 1949, pp. 21-40.
    [18]Unal, M. F. and Rockwell, D., “On Vortex Formation from a Cylinder Part I: The Initial Instability,” Journal of Fluid Mechanics, Vol. 190, 1988, pp. 491-512.
    [19]Sarpkaya, T., “An Inviscid Model of Two Dimensional Vortex Shedding for Transient and Asymptotically Steady Separated Flow over an Inclined Plate,” Journal of Fluids Mechanics, Vol. 68, 1975, pp. 109-128.
    [20]Wong, H. Y., “Wake Flow Stabilization by the Action of Base Bleed,” Journal of Fluids Engineering, Vol. 107, 1985, pp. 378-384.
    [21]Brooks, T. F. and Schlinker, R. H., “Progress in Rotor Broadband Noise Rresearch,” Vertica, Vol. 7, 1983, pp. 287-307.
    [22]Stuber, K. and Gharib, M., “Experiment on the Forced Wake of an Airfoil Transition from Order to Chaos,” AIAA Paper 88-3840-CP, 1988, pp. 723-730.
    [23]Huang, R. F. and Lee, H. W., “Effects of Freestream Turbulence on Wing-Surface Flow and Aerodynamic Performance,” AIAA Journal, Vol. 36, No. 6, 1999, pp. 965-972.
    [24]Roshko, A., “On the Wake and Drag of Bluff Bodies,” Journal of the Aerospace Science, Vol. 22, February 1955, pp. 124-135.
    [25]Simons, J. E. L., “Similarities Between Two-Dimensional and Axisymmetric Vortex Wakes,” Aeronautical Quarterly, Vol. 28, February 1977, pp. 15-20.
    [26]Levi, E., “A Universal Strouhal Law,” ASCE Journal of Engineering, Vol. 109, November 1983, pp. 718-727.
    [27]Huang, R. F. and Lin, C. L., “Vortex Shedding and Shear-Layer Instability of Wing at Low-Reynolds Numbers,” AIAA Journal, Vol. 33, No. 8, 1995, pp. 1398-1430.
    [28]Zaman, K. B. M. Q., McKinzie, D. J., and Rumsey, C. L., “A Natural Low-Frequency Oscillation of the Flow Over an Airfoil Near Stalling Conditions,” Journal of Fluid Mechanics, Vol. 202, 1989, pp. 403-442.
    [29]Oertel, H., Jr., “Wakes behind Blunt Bodies,” Annual Reviews of Fluid Mechanics, Vol. 22, 1990, pp. 539-564.
    [30]Nishioka, M. and Sato, H., “Mechanism of Determination of the Shedding Frequency of Vortices Behind a Cylinder at Low Reynolds Numbers,” Journal of Fluid Mechanics, Vol. 89, 1978, pp. 49-60.
    [31]Lienhard, J. H., “Synopsis of Lift, Drag, and Vortex Frequency Data for Rigid Circular Cylinders,” College of Engineering, Research Division Bulletin 300, Washington State University, 1966.
    [32]Coanda, H. M., “Device for Deflecting a Stream of Elastic Fluid Projected into an Elastic Fluid,” United States Patent, No. 2052869, 1936.
    [33]Newman, B. G., “The Deflection of Plane Jets by Adjacent Boundaries – Coanda Effect,” in Boundary Layer and Flow Control – Its Principles and Application, Vol. 1, Ed. Lachmann, G. V., Pergamon Press, New York, 1961, pp. 232-264.
    [34]Warren, R. W., “Negative Feedback Oscillator,” United States Patent, No. 3158166, 1964.
    [35]Okabayashi, M. and Haruta, M., “Fluidic Flowmeter,” United States Patent, No. 4610162, 1986.
    [36]Ringwall, C. G., “Fluidic Flow and Velocity Sensor,” United States Patent, No. 4107990, 1978.
    [37]Challandes, C., “Fluidic Flowmeter,” United States Patent, No. 4976155, 1990.
    [38]Tritton, D. J., Physical Fluid Dynamics, Second Edition, Oxford University Press, New York, 1988, pp. 150-152.
    [39]Tippetts, J. R., Ng, H. K., and Royle, J. K., “An Oscillating Bistable Fluid Amplifier for Use as A Flowmeter,” Journal of Fluid Control (Fluidics Quarterly), Vol. 5, 1973, pp. 28-42.
    [40]Yamasaki, H. and Honda, S., “A Unified Approach to Hydrodynamic Oscillator Type Flowmeters,” Journal of fluid control, Vol. 13, 1981, pp. 1-17.
    [41]蔡昆志,射流振盪器之流場分析與微混合器應用設計,國立清華大學動力機械工程學系碩士論文,2003.
    [42]Lua, A. C. and Zheng, Z., “Numerical Simulations and experimental Studies on a Target Fluidic Flowmeter,” Flow Measurement and Instrumentation, Vol. 14, No. 1, 2003, pp. 43-49.
    [43]Yamamoto, K., Hiroki, F., and Hyodo, K., “Self-sustained Oscillation Phenomena of Fluidic Flowmeters,” Journal of the Visualization, Vol. 1, No. 4, 1999, pp. 387-396.
    [44]Lalanne, L., Le Guer, Y., and Creff, R., “Dynamics of a Bifurcating Flow within an Open Heated Cavity,” International Journal of Thermal Sciences, Vol. 40, No. 1, 2001, pp. 1 - 10.
    [45]Huang, B., “The Switch Fluidic Oscillator for Fluid Metering,” Proceedings of the Sixth International Conference on Flow Measurement, Korea Research Institute of Standards and Science, Taejon, Korea, 1993, pp. 416-423.
    [46]Drazin, P. G., Nonlinear Systems, Cambridge University Press, Cambridge, 1992.
    [47]Uzol, O. and Camci, C., “Experimental and Computational Visualization and Frequency Measurements of the Jet Oscillation inside a Fluidic Oscillator,” Journal of the Visualization, Vol. 4, No. 8, 2002, pp. 88-96.
    [48]Camci, C. and Herr, F., “Forced Convection Heat Transfer Using a Self-Oscillating Impinging Planar Jet,” Journal of Heat Transfer, ASME Transactions, Vol. 120, No. 4, 2002, pp. 770-782.
    [49]Flagan, R. C. and Seinfeld, J. H., Fundamentals of Air Pollution Engineering, Prentice-Hall, Englewood Cliffs, New Jersey, 1988, pp. 290-307.
    [50]Muller, T. J., “Flow Visualization by Direct Injection,” Fluid Mechanics Measurements, 2nd ed., Ed. Goldstein, R. J., Taylor & Francis, London, 1996, pp. 367-450.
    [51]Potter, M. C., Mechanics of Fluids, Prentice-Hall, Inc.Press, 2002.
    [52]Bloor, M. S., “The Transition to Turbulence in the Wake of a Circular Cylinder,” Journal of Fluid Mechanics, Vol.19, 1964, pp. 290-304.
    [53]Schlichting, H., Boundary Layer Theory, 7th ed., McGraw-Hill, New York, 1979, pp. 555-557.
    [54]Huang, R. F. and Lee, H. W., “Turbulence Effect on Frequency Characteristics of Unsteady Motions in Wake of Wing,” AIAA Journal, Vol. 38, No. 1, 2000, pp. 87-94.
    [55]Gukhman, A. A., Introduction to the Theory of Similarity, Academic Press, New York, 1965, pp. 19-47.
    [56]Novak, J., “Strouhal Number and Flat Plate Oscillation in an Air Stream,” Acta Technica Csav, Vol. 4, July 1973, pp. 372-386.
    [57]Toebes, G. H. and Eagleson, P. S., “Hydroelastic Vibrations of Flat Plates Related to Trailing Edge Geometry,” Journal of Basic Engineering, Vol. 83, No. 4, 1961, pp. 671-678.
    [58]Tennekes, H. and Lumley, J. L., A first Course in Turbulence, MIT Press, Cambridge, 1972, PP. 8-103.
    [59]Hunt, J. C. R., Abell, C. J., Peterka, J. A., and Woo, H., “Kinematic Studies of the Flows around Free or Surface-Mounted Obstacles; Applying Topology to flow visualization,” J. Fluid Mech., Vol. 86, Pt. 1, 1978, pp. 179-200.

    QR CODE