簡易檢索 / 詳目顯示

研究生: 賴玉親
Yu-ching Lai
論文名稱: 超高分子量聚乙烯複合纖維超高延伸及經電漿處理性質研究
Investigation of Ultradrawing and Plasma Treated Properties of Ultra-high Molecular Weight Polyethylene Composite Fibers
指導教授: 葉正濤
Jen-taut Yeh
口試委員: 陳幹男
Kan-nan Chen
黃繼遠
Chi-yuan Huang
洪輝嵩
Huei-song Hong
許耀基
Yao-chi Shu
石天威
Tian-wei Shi
黃國賢
Kuo-shien Huang
吳進三
Chin-san Wu
邱士軒
Shih-hsuan Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 145
中文關鍵詞: 超高分子量聚乙烯奈米碳管剝離強度電漿
外文關鍵詞: peeling strength, plasma, Carbon nanotubes, ultrahigh-molecular-weight polyethylene
相關次數: 點閱:428下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要針對奈米碳管含量(cabon nanotubes, CNTs),超高分子量聚乙烯(ultrahigh molecular polyetheylenes, UHMWPE)濃度和冷卻成型溫度對UHMWPE/CNTs初絲樣品的延伸影響作一有系統性探討。 研究發現UHMWPE/CNTs初絲樣品的可延伸比均隨其內CNTs含量和冷卻成型溫度達一最適化值時而達最大。 事實上,經最適化奈米碳管含量和冷卻成型溫度製備的UHMWPE/CNTs初絲樣品期可延伸比,較相同條件下未添加奈米碳管的UHMWPE初絲樣品高。 另外,經動態機械黏彈性質分析,發現UHMWPE/CNTs初絲樣品具有一異常高溫之α-transition溫度(約95-115℃)。 值得注意的是,此α-transition溫度隨UHMWPE/CNTs初絲樣品之成型溫度提高或CNTs含量減少而明顯增加。 另一方面,以電漿處理UHMWPE織物表面改善UHMWPE織物親水性及增加表面粗糙度,為了解上述這些有趣的性質,本研究進一步對UHMWPE 、UHMWPE/CNTs初絲樣品和UHMWPE織物表面及斷面型態,雙折射率,熱學和抗張強度等性能進行一系列的探討。


    Investigation of the formation temperatures on the ultradrawing properties of ultrahigh-molecular-weight polyethylene /carbon nanotubes (UHMWPE/CNTs) fiber specimens is carried out. Varying CNT contents of UHMWPE/CNTs gel solutions were gel-spun at the optimum concentration and temperature but cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNTs composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNTs as-prepared fibers reached the maximum, when they were prepared at the optimum CNT content and formation temperature. The Dra values of UHMWPE/CNTs as-prepared fibers prepared using the optimum CNT content and formation temperature is about 33 % higher than those of the UHMWPE as-prepared fibers prepared at the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperatures (Tm) values of UHMWPE/CNTs as-prepared fiber specimens increase significantly as their formation temperatures increase. In contrast, the Wc values increase but Tm values of the as-prepared UHMWPE/CNTs fibers reduce significantly when their CNT contents increase. Dynamic mechanical analysis of the UHMWPE and UHMWPE/CNTs fiber specimens exhibits extraordinary high -and low -transitions, in which the peak temperatures of -and -transitions increase dramatically, when their formation temperatures increase and/or CNTs contents reduce.
    On the other hand, investigation of helium / oxygen / nitrogen (He / O2 / N2)-plasma was used to etching/modify the surface of ultra-high molecular weight polyethylene (UHMWPE) fiber. After coated with polyurethane (PU), the plasma treated UHMWPE fabrics were laminated. It was found that the values of peeling strength between the laminated UHMWPE fabrics treated with He/O2/N2-plasma were significantly higher (3 ~ 4 times) than that between pristine fabrics. The hydrophilic property and the value of the surface roughness of the UHMWPE fibers increased significantly after treated with He/O2/N2 plasma. The mechanism of the oxidation/degradation of the polymers on the surface of the UHMWPE fiber during He/O2/N2-plasma treatment was suggested. In addition, it was found that the higher content of functional groups (carbonyl, aldehyde and carboxylic acid) on fiber surface and the higher value of surface roughness of the UHMWPE fiber treated with He/O2/N2-plasma could significantly improve the adhesion-strength of the laminated UHMWPE fabric. Especially, the micro aperture on the surface of UHMWPE fiber caused by the strenuous etching of He/O2/N2-plasma treatment was also an important factor on improving the adhesion-strength between the laminated UHMWPE fabrics.

    博士學位論文指導教授推薦書 博士學位考試委員審定書 摘要 ABSTRACT 致謝 TABL OF CONTENTS LIST OF TABLE LIST OF FIGURE CHAPTER 1Prolegomenon 1.1Indtroduction 1.2 Introduction to Polyethylene 1.3 High-Strength Polyethylene Fiber 1.3.1 High-Strength Polyethylene Fiber Manufacturing Technology 1.3.2 Solid State Extrusion 1.3.3 Ultra-Drawing 1.3.4 Zone Drawing 1.3.5 Surface Growth Method 1.3.6 Gel Spinning 1.3.6.1 The Reasons the UHMWPE Gel Spinning Technique Produces High-Strength Fibers 1.3.6.2 The Essentials of the UHMWPE Gel Spinning Technique 1.4 The Effect of Hot Drawing on the Formation and Structure of Gel Spun Fibers 1.4.1 Formation and Mechanical Properties 1.4.2 Thermal Properties 1.4.3 Aggregation Structure 1.5 Introduction to Carbon Nanotubes 1.5.1 The Structure of Carbon Nanotubes 1.5.2 Characteristics of Carbon Nanotubes 1.5.3 Purification of Carbon Nanotubes 1.5.3.1 Oxidation Method 1.5.3.2 Filtration Method References CHAPTER 2 Ultradrawing Properties of Ultra-high Molecular Weight Polyethylene / Carbon Nanotube Fibers Prepared at Various Formation Temperatures Abstract 2.1 Introduction 2.2 Experimental 2.2.1 Materials and sample preparation 2.2.2 Dynamic mechanical properties 2.2.3 Morphology, birefringence and thermal analysis 2.2.4 Drawing and tensile properties 2.3 Results and discussion 2.3.1 Thermal Properties of the as-prepared UHMWPE/CNTs fibers 2.3.2 Achievable draw ratios of the as-prepared UHMWPE and UHMWPE/CNTs fibers 2.3.3 Birefringence properties of the as-prepared and drawn UHMWPE/CNTs fibers 2.3.4 SEM morphology analysis 2.3.5 Dynamic mechanical properties of UHMWPE/CNTs as-prepared fibers 2.3.6 Tensile Properties of UHMWPE/CNTs fibers 2.4 Conclusions References CHAPTER 3 An Improvement on the Adhesion-Strength of Laminated Ultra-high Molecular Weight Polyethylene Fabrics: Surface-Etching/Modification Using Highly Effective Helium/Oxygen / Nitrogen Plasma Treatment Abstract 3.1 Introduction 3.2 Experimental 3.2.1 Materials 3.2.2 Treatment of plasma 3.2.3 Preparation of laminated UHMWPE fabrics 3.2.4 Peeling test 3.2.5 Contact Angle of Water on UHMWPE fabric 3.2.6 Fourier Transform Infrared spectroscopy (FTIR) 3.2.7 Electron spectroscopy for chemical analysis (ESCA) 3.2.8 Surface composition analysis 3.2.9 Atomic Force Microscopy (AFM) 3.2.10 Observation of scanning electron microscope (SEM) 3.3 Results and Discussion 3.3.1 Peeling strength Properties of UHMWPE fibric 3.3.2 Morphology of UHMWPE fabric 3.3.3 Contact Angle of Water of UHMWPE fabric 3.3.4 Atomic Force Microscopy of UHMWPE fabric 3.3.5 Fourier transform infrared spectroscopy of UHMWPE fibric 3.3.6 Electron spectroscopy for chemical analysis of UHMWPE fibric 3.3.7 Elemental analysis of UHMWPE fabric 3.3.8 Morphology of UHMWPE fiber 3.4 Conclusions ReferencesCHAPTER 4 Conclusions 作者簡介 博碩士論文授權書

    1. P. Smith, P. J. Lemstra, J Mater Sci, 15, 505 (1980).
    2. P.Smith, P. J.Lemstra, H. C. Booij, J Mater Sci, 19, 877 (1981).
    3. J. Smook, A. J. Pennings, J Mater Sci, 19, 31(1981).
    4. P. Smith, P. J. Lemstra, J. P. L.Pippers, A. M. Kiel, Colloid Polym Sci, 258, 1070 (1981).
    5. J. Bore, H. J. Vanden Berg, A. J. Pennings, Polymer, 25, 513 (1984).
    6. M. Matsuo, R. S. J. Manley, Macromolecules, 15, 985 (1982).
    7. T. Kanamoto, A. Tsuruta, K. Tanaka, T. Takeda, R. S. Porter, Polym J, 15, 327 (1983).
    8. K. Furuhata, T. Yokokawa, K. Miyasaka, J Polym Sci Polym Phys Ed, 22, 133 (1984).
    9. A. Zhang, K. Chen, H. Zhao, Z. Wu, J Appl Polym Sci, 38, 1369 (1989).
    10. K. Chen, A. Zhang, P. Lu, Z. Wu, J Appl Polym Sci, 38, 1377 (1989).
    11. J. T. Yeh, S. S. Chang, J Appl Polym Sci, 79, 1890 (2001).
    12. J. T. Yeh, Y. L. Lin, C. C. Fan-Chiang, Macromol Chem Phys, 197, 3531 (1996).
    13. J. T. Yeh, H. C. Wu, Polym J, 30, 1 (1998).
    14. J. T. Yeh, S. S. Chang, J Mater Sci, 35, 3227 (2000).
    15. J. T. Yeh, S. S. Chang, M. S. Yen, J Appl Polym Sci, 70, 149 (1998).
    16. X. Wang, S. Li, R. Salovey, J Appl Polym Sci, 35, 2165 (1988).
    17. A. E. Zacharrriades, R. S. Eds. Porter, Marcel Dekker: New York, 1983.
    18. D. W. Ihm, J. A. Cuculo, J Polym Sci Part B: Polym Phys, 25, 1331 (1987).
    19. G. Capaccio, T. A. Crompton, I. M. Word, Polymer, 17, 643 (1976).
    20. A. Zwijnenburg, A. J. Pennings, Colloid Polym Sci, 259, 868 (1978).
    21. J. C. M. Torfs, A. J. Pennings, J Appl Polym Sci, 26, 303 (1981).
    22. P. Smith, P. J. Lemstra, Macromol Chem, 180, 2983 (1979).
    23. B. Kalb, A. J. Pennings, J Mater Sci, 15, 2548 (1980).
    24. P. Smith, P. J.Lemstra, J. P. L. Pijpers, A. M. Kiel, Colloid Polym Sci, 259, 1070 (1981).
    25. K. Kajiwara, J. E. Mcintyre, Advanced Fiber Spinning Technology; Woodhead Publishing Ltd.: Cambridge, U.K., 1994; p. 174.
    26. M. I. Abo, E. I. Maaty, R. H. Olley, D. C. Bassett, J Mater Sci, 34, 1975 (1999).
    27. M. Mastuo, C. Sawatari, T. Nakano, Polym J, 18, 759 (1986).
    28. W. I. Cha, S. H. Hyon, Y. Ikada, J Polym Sci Part B: Polym Phys, 32, 297 (1994).
    29. K. Yamaura, T. Tanigami, N. Hayashi, K. I. Kosuda, S. Okuda, Y. Takemura, M. Itoh, S. Matsuzawa, J Appl Polym Sci, 40, 905 (1990).
    30. K. Yamaura, M. Suzuki, M. Yamamoto, R. Shimada, T. Tanigami, J Appl Polym Sci, 58, 1787 (1995).
    31. Tech Text Inte, 4, 3 (1996).
    32. T. Ohta, Polym Eng Sci, 23, 697 (1983).
    33. C. Sawatari. T. Okumura, and M. Matsuo, Polym J., 18, 741 (1986).
    34. D. Darras, R. Sequela, and F. Rietsch, J. Polym Sci, Polyym Phys. Ed., 30, 349 (1992).
    35. J. T. Yeh, and S. S. Chang, J. Appl Polym Sci, 79, 1890 (2001).
    36. J. T. Yeh, S. S. Chang, J Mater Sci, 35, 3227 (2000).
    37. J. T. Yeh, S. S. Chang, M. S. Yen, J Appl Polym Sci, 70, 149 (1998).
    38. J. T.Yeh, S. S. Chang, Polym Eng Sci, 42, 1558 (2002).
    39. P. Smith, H. D. Chanzy, B. P. Rotzinger, J Mater Sci, 22, 523 (1987).
    40. T. Kanamoto, T. Ohama, K. Tanaka, M. Takeda, R. S. Porter, Polymer, 28, 1517 (1987).
    41. A. Ciferri, I. M. Ward, Ultra-High Modulus Polymers; Applied Science: London (1978).
    42. N. Inoue, M. Ichihara, Elsevier Applied Science: London (1985).
    43. P. J. Lemstra, R. Kirschbaum, Polymer, 26, 1372 (1985).
    44. P. Smith, P. J. Lemstra, B. Kalb, A. J. Pennings, Polym Bull, 1, 733 (1979).
    45. T. Jiang, J. T. Yeh, Y. T. Lin and K. N. Chen, Polym Eng Sci, 43, 1765 (2003).
    46. C. Sawatari, M. Matsuo, Polymer, 30, 1603 (1989).
    47. G. Obser, S. Blasenberg, Colloid Polym Sci, 241, 985 (1970).
    48. I. Sakurada, T. Ito, K. Nakamae, J Polym Sci Part C: Polym Symp, 15, 75 (1966).
    49. K. Kajiwara and J. E. Mcintyre, Advanced Fiber Spinning Technology, Wciodhead Publishing Ltd.. Cambridge, Chap. 8, 179 (1994).
    50. P. Smith, H. D. Chanzy, B. P. Rotzinger, Polym Commun, 26, 258 (1985).
    51. M. Matsuo, C. Sawatari, M. Iida, M. Yoneda, Polym J, 17, 1197 (1985).
    52. T. Kanamoto, A. Tsurta, K. Tanana, M. Takeda, R. S. Porter, Macromolecules, 21, 470 (1988).
    53. J. Smook, A. J. Pennings, J Appl Polym Sci, 27, 2209 (1982).
    54. D. C. Prevorsek, Polymer Liquid Crystals; Academic: New York, 1982; p 357.
    55. B. Kalb, A. J. Pennings, Polymer , 21, 3 (1980).
    56. S. Iijima, Nature, 354, 56 (1991).
    57. R. Andrew, D. Jacques, A. M. Rao, T. Rantell, F. Derbyshire, Y. J. Chen, Appl Polym Sci, 75, 1329 (1999).
    58. D. Qian, E. C. Dickey, R. Andrews, T. Rantell, J Appl Polym Sci, 76, 2868 (2000).
    59. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, P. Poulin, Science, 290, 1331 (2000).
    60. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G.Kim, R. H. Baughman, Nature, 423, 703 (2003).
    61. J. C. Kearns, R. L. Shambaugh, J Appl Polym Sci, 86, 2079 (2002).
    62. Y. Wang, R. Cheng, L. Liang, Y. Wang, Compos Sci Tech, 65, 793 (2005).
    63. S. Ruan, P. Gao, T. X. Yu, Polymer, 47, 1604 (2006).
    64. Z. Mao, A. Garg, S. B. Sinnott, Nanotechnology, 10, 273 (1999).
    65. H. D. Wagner, Chem Phys Lett, 361, 57 (2002).
    66. T.Ohta, Polym. Eng. Sci., 13, 697 (1983).
    67. Technical Textiles International, P3, April (1996).
    68. W. M. P:erkins, N. J. Capiati, and R. S. Porter, Polym. Eng. Sci., 16, 200 (1976).
    69. A. E. Zahariades, T. Kanamoto and R. S. Porter, J. Polym. Sci., Polym. Phy. Ed., 18, 575 (1980).
    70. D. M. Bigg, M. M. Epstein, R. J. Fiorentine and E. G. Smith, J. Appl. Polym. Sci., 26, 395 (1981).
    71. W. Wu and W. B. Black, Polym. Eng. Sci., 19, 1169 (1979).
    72. W. Wu, P. G. Simpson and W. B. Black, J. Polym. Sci., Polym. Phys. Ed., 18, 751 (1970).
    73. W. N. Taylor and E. S. Clark, Polym. Eng. Sci., 18, 518 (1978).
    74. E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).
    75. H. Kiho and K. Asai, Kobunshi Toronkai Preprint (Japan), 835 (1974).
    76. M. Kamezawa, K. Yamada and M. Takayanagi, J. Appl. Polym. Sci., 24, 1227 (1979).
    77. S. N. Zurkov, B. Ya. Levin and A. V. Savitskij, Dokl. Ahad. Nauk SSSR, 186, 32 (1969).
    78. A. Zweinenburg, PhD thesis, State Univ. of Groningen (1978).
    79. A. J. Pennings and C. J. H. Schouteten and A. M. Kiel, J. Appl. Polym. Sci., 167 (1972).
    80. P. Smith, P. J. Lemstra, B. Kalb and A. J. Pennings, Polym. Bull., 1, 733 (1979).
    81. J. Smook, C. J. Torf, P. F. VanHutten and A. J. Pennings, Polym. Bull., 2, 293 (1980).
    82. P. J. Barham and A. Keller, J. Mater. Sci., 15, 2229 (1980).
    83. P. Smith and P. J. Lemstra, Makromol. Chem., 180, 2983 (1979).
    84. P. Smith and P. J. Lemstra, Polymer, 21, 1341 (1980).
    85. B. Kalb and A. J. Pennings, Polymer, 21, 3 (1980).
    86. B. Kalb and A. J. Pennings, J. Mater. Sci., 15, 2584 (1980).
    87. B. C. Satishkumar, A. Govindaraj, J. Mofokeng, G. N. Subbanna, C. N. R. Rao, J. Appl. Polym. Sci., 29, 4925(1996).
    88. Y. H. Lee, Y. S. Park, Y. C. Choi,K. S. Kim, D. C. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Carbon, 39, 655 (2001).
    89. J. M. Bonard, T. Stora, J. P. Salvetat, F. Maier, T. Stockli, C. Duschl, L. Forro, W. A. De Heer, A. Chatelain, Adv. Mater., 9, 827 (1997).
    90. S. Bandow, A. M. Rao, K. A. Williams, A. Thess, R. E. Smalley, P. C. Eklund, Chem. Phys., 101, 8839(1997).
    91. K. B. Shelimov, R. O. Rinat, A. G. Rinzler, C. B. Huffmann, R. E. Smalley, Chem. Phys. Lett., 282, 429 (1998).

    1. K. Kajiwara and J. E. Mcintyre , Advanced Fiber Spinning Technology, Woodhead Publishing Ltd.: Cambridge, U.K., p. 174 (1994).
    2. P. Smith and P. Lemstra , J. Macromol Chem, 180, 2983 (1979).
    3. X. Changfa, Z. Yufeng, A. Sulin and J. Guangxia , J. Appl Polym Sci, 59,931 (1996).
    4. M. I. Abo, E. I. Maaty, R. H. Olley and D. C. Bassett, J. Mater Sci, 34, 1975 (1999).
    5. M. Mastuo, C. Sawatari and T. Nakano, Polym J., 18, 759 (1986).
    6. W. I. Cha, S. H. Hyon and Y. Ikada, J. Polym Sci Part B: Polym Phys, 32, 297 (1994).
    7. K. Yamaura, T. Tanigami, N.Hayashi, K. I. Kosuda, S.Okuda, Y. Takemura, M. Itoh and S. Matsuzawa, J. Appl Polym Sci, 40, 905 (1990).
    8. K. Yamaura, M. Suzuki, M.Yamamoto, R. Shimada and T. Tanigami, J. Appl Polym Sci, 58, 1787 (1995).
    9. Z. Xiefei, L. Tao, T. V. Sreekumar and K. Satish, Polymer, 45, 8801 (2004).
    10. Tech Text Inte, 4, 3 (1996).
    11. T. Ohta, Polym Eng Sci, 23, 697 (1983).
    12. P. Smith, H. D. Chanzy and B. P. Rotzinger, Polym. Commun. 26, 258 (1985).
    13. P. Smith, H. D. Chanzy and B. P. Rotzinger, J. Mater. Sci., 22, 523 (1987).
    14. C. Sawatari, T. Okumura and M. Matsuo, Polymr. J. 18, 741 (1986).
    15. D. Darras, R. Sequela and F. Rietsch, J. Polym. Sci., Polym. Phys. Ed. 30, 349 (1992).
    16. J. T. Yeh, Y. L. Lin and C. C. Fan-Chiang, Macromol. Chem. Phys. 197, 3531 (1996).
    17. J. T. Yeh and H. C. Wu, Polym. J. 30, 1 (1998).
    18. J. T. Yeh, S. S. Chang and M. S. Yen, J. Appl. Polym. Sci. 70, 149 (1998).
    19. J. T. Yeh and S. S. Chang, J. Mater. Sci. 35, 3227 (2000).
    20. J. T. Yeh and S. S. Chang, J. Appl. Polym. Sci., 79, 1890 (2001).
    21. T. Ohta, Sen-i Gakkaishi. 40, 407 (1984).
    22. P. Smith and P. J. Lemstra, J. Mater. Sci., 15, 505 (1980).
    23. J. T. Yeh and S. S. Chang, Polym. Eng. Sci., 42, 1558 (2002).
    24. T. Jiang, J. T. Yeh, Y. T. Lin and K. N. Chen, Polym. Eng. Sci., 43, 1765 (2003).
    25. J. T. Yeh, Y. T. Lin and K. N. Chen, J. Polym. Res., 10, 55 (2003).
    26. M. Matsuo, C. Sawatari, M. Iida and M. Yoneda, Polym. J., 17, 1197 (1985).
    27. T. Kanamoto, A. Tsurta, K. Tanana, M, Takeda, and R. S. Porter, Macromolecules, 21, 470 (1988).
    28. J. Smook and A. J. Pennings, J. Appl. Poly. Sci., 27, 2209 (1982).
    29. D. C. Prevorsek, Polymer liquid crystals, Academic Press, p.357 (1982).
    30. B. Kalb and A. J. Pennings, Polymer, 21, 3 (1980).
    31. M. A. Wilding and I. M. Word, Polymer, 19, 969 (1978).
    32. P. Smith and P. J. Lemstra, Polymer, 21, 1341 (1980).
    33. S. Kavesh and D. C. Prevorsek, U.S. Patent 4,536,536 (1985).
    34. S. Kavesh and D. C. Prevorsek, U.S. Patent 4,551,296 (1985).
    35. S. Kavesh and D. C. Prevorsek, U.S. Patent 4,413,110 (1983).
    36. High Performance Textiles, 8, 3 (1996).
    37. D. Sa’nchez-Portal, E. Artacho, J. M. Soler, A. Rubio, P. Ordejo’n Phys. Rev. B, 59,12678 (1999).
    38. B. Vigolo, A. Penicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier and P. Poulin, Science, 290, 1331(2000).
    39. A. B. Dalton, S. Collins, E. Munoz, J. M. Razal, V. H. Ebron, J. P. Ferraris, J. N. Coleman, B. G. Kim and R.H. Baughman, Nature, 423,703 (2003).
    40. J. C. Kearns and R. l. Shambaugh, J. Appl. Polym. Sci.,86, 2079 (2002).
    41. Y. Wang, R. Cheng, L. Liang and Y. Wang, Comps. Sci. and Tech., 65,793 (2005).
    42. S. Ruan, P. Gao and T.X. Yu, Polymer, 47, 1604 (2006).
    43. J. T. Yeh, S. C. Lin and K. N. Chen, J. Appl. Polym. Sci., 110, 2538
    44. (2008).
    44. B. Wunderlich, Macromolecular Physics, Academic: New York, 1, 388 (1973).
    45. S. B. Lin and J. L. Koenig, J. Polym. Sci., Polym. Symp., 71, 121
    (1984).
    46. G. Groeninckx and H. Reynaers, J. Polym. Sci., Polym. Phys. Ed., 18, 1325 (1980).
    47. F. Fontaine, J. Ledent, G. Groeninckx and H. Reynaers, Polymer, 23, 185 (1982).
    48. R. H. Boyd, Polymer, 26, 1123 (1985).
    49. Y. P. Khanna, E. A. Turi, T. J. Taylor, V. V. Vickroy, R. Y. Abbot, Macromolecules, 18, 1302 (1985).
    50. D. R. Saini, A. V. Shenoy, Polym. Commun., 26, 50 (1985).
    51. F. C. Stehling, L. Mandelkern, Macromolecules, 3, 242 (1970).
    52. D. E. Kline, J. A. Saver, A. E. Woodward, J. Polym. Sci., 22, 455 (1956).
    53. L. E. Nielson, “Mechanical Properties of Polymers”, Reinhold, New York, pp. 180-182, 209-210 (1962).
    54. S. D. Clas, D. C. McFaddin, K. E. Russell, J. Polym. Sci., Polym. Phys. Ed., 25, 1057 (1987).
    55. N. G. McCrum, B. E. Read, G. Williams, “Anelastic and Dielectric Effect in Polymeric Solids”, Wiley, New York (1967).

    1. S. Yokoyama, M. Torii, K. Matsuura, A. Sano, J. P. Pat. 63,015,838 (1988).
    2. A. E. Zachariades, U. S. Pat. 5,160,472 (1992).
    3. T. Sato, J. P. Pat. 61,124,621 (1986).
    4. S. Kobayashi, T. Mizoe, Y. Iwanami, S. Yokoyama, K. Jimbo, E. P. Pat. 0,397,013 (1990).
    5. U. K. Danieru, S. S. Kiisu., J. P. Pat. 4, 227,605 (1992).
    6. C. H. Choi, S. I. Oh, K. R. Pat. 20050046247 (2005).
    7. Y. Nakamura, C. N. Pat. 1,863,854 (2006).
    8. S. Nakanishi, J. P. Pat. 2006314324 (2006).
    9. T. Yoshikawa, A. Kojima, J. P. Pat. 4,289,266 (1992).
    10. T. Shiraki, Y. Yoshimura, K. Nakashima, U. S. Pat. 5,256,358 (1993).
    11. W. L. Chen, D. M. Lee, L. T. Chen, M. T. The, N. L. Pat. 9,301,979 (1995).
    12. Z. Yan, S. G. Liu, C. N. Pat. 1,448,546 (2003).
    13. M. Douglas, U.S Pat. 6,500,775 (2002).
    14. R. Thorsten, C. Holger, F. Thomas, B. Harald, K. Gerald, U.S. Pat. 2007049684 (2007).
    15. J. C. Roze, W. Gunter, K. Diether, W. Andreas, B.G. Pat. 64,942 (2006).
    16. M. R. John, P. G. Joseph, S. X. Huang, A. J. Wayde, M. M. Kristopher, L. M. Gerald, R. P. Willam, J. P. Brian, C. V. Joseph., U.S. Pat. 2007010612 (2007).
    17. N. Inagaki, S. Tasaka, S. Shimada, J Appl Polym Sci, 79, 808( 2001).
    18. Y. W. Park, N. Inagaki, Polymer, 44, 1569 (2003).
    19. Y.W. Park, N. Inagaki, J Appl Polym Sci, 93, 1012 (2004).
    20. J. Yip, K. Chan, K. M. Sin, K. S. Lau, Polymer International, 53, 634 (2004).
    21. B. Schartel, G. Kuhn, R. Mix, J. Friedrich, Macromolecular Materials and Engineering, 287, 579 (2002).
    22. N. Inagaki, S. Tasaka, H. Kawai, Y. Yamada, J Appl Polym Sci, 64, 831 (1997).
    23. A. Cireli, B. Kutlu, M. Mutlu, J Appl Polym Sci, 104, 2318 (2007).
    24. R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds”, 3rd edition, 1977. J. Wiley & Sons, Inc., New York.
    25. L. S. Shi, L. Y. Wang , Y. N. Wang, European Polymer Journal, 42, 1625 (2006).
    26. N. Grassie, G. Scott, Degradation and Stabilization of Polymers, Cambridge University Press: Cambridge, England (1985).
    27. J. C. Riviere, S. Myhra, Handbook of Surface and Interface Analysis,.Marcel Dekker, Inc., New York (1998).
    28. D. M. Choi, C. K. Park, K. Cho, C. E. Park, Polymer, 38, 6243 (1997).
    29. K. S. Kim, C. M. Ryu, C. S. Park, G. S. Sur, C. E. Park, Polymer, 44, 6287 (2003).
    30. H. H. Hsiung, C. C. Chemg, Textile Res J, 65,607 (1995).

    無法下載圖示 全文公開日期 2015/11/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE