簡易檢索 / 詳目顯示

研究生: 陳威仁
Wei-jen Chen
論文名稱: 分析藉臭氧活化製備柚皮苷-幾丁聚醣基材之骨誘導性及細胞與材料交互作用力
Analysis of Osteoinductivity and Cell-Material Interaction of Naringin-Chitosan Substrates Prepare by Ozone Treatment.
指導教授: 何明樺
Ming-Hua Ho
口試委員: 曾婷芝
Tina T.-C. Tseng
高震宇
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: 幾丁聚醣柚皮苷臭氧改質骨誘導性
外文關鍵詞: chitosan, naringin, ozone treatment, osteoinductivity
相關次數: 點閱:390下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

柚皮苷為天然黃酮類,是一種HMG-CoA之抑制劑。過去的文獻指出柚皮苷能促進骨生成,但高濃度的柚皮苷會造成細胞毒性。為了控制柚皮苷的濃度及釋放時間,我們將柚皮苷固定於幾丁聚醣表面。考慮到傳統交聯系統可能的毒性或低接枝效率,在本研究中,我們利用臭氧改質激發幾丁聚醣表面建立自由基,接著利用熱誘導法固定柚皮苷於表面。通過紫外光譜定量材料表面的柚皮苷,並藉由掃描式電子顯微鏡(SEM)及紅外線光譜(FTIR)分析改質後幾丁聚醣基材的特性。結果表明幾丁聚醣成功且有效地接枝於幾丁聚醣上,同時也發現被固定柚皮苷被緩慢地釋放,經由這釋放程序,可以良好地控制培養液中柚皮苷濃度。
細胞實驗結果指出,表面固定柚皮苷之幾丁聚醣基材無細胞毒性且能促進細胞的活性與貼附。更重要的是,柚皮苷大幅促進了骨細胞的分化,早期骨分化指標的鹼性磷酸酶(alkaline phosphatase, ALP)表現在經過臭氧與柚皮苷改質的基材上被促進了一倍。通過骨鈣素(OCN, osteocalcin)與骨涎蛋白(BSP, bone sialoprotein)的表現得知:固定化柚皮苷也明顯地促進骨細胞中後期的分化。
為了進一步研究固定化柚皮苷的效果,我們利用SEM觀察骨母細胞的細胞骨架。結果指出在具有固定化柚皮苷的基材表面上,細胞層狀偽足(lamellipodia)的形成明顯地被促進了,除了證明細胞有較佳的貼附表現外,也顯示細胞內部之細胞骨架在此一表面上處於一高度活化的狀況,這項發現與本實驗中免疫螢光染色的結果吻合,證實固定化柚皮苷能高度激發細胞骨架中之肌動蛋白。利用生物原子力顯微鏡(bio-AFM, bio-atomic force microscope)測定骨母細胞機械性質的結果顯示固定化柚皮苷能大幅增加細胞與基材的交互作用力。而Runx2的結果亦指出:基材表面的柚皮苷誘發了細胞骨架相關的骨分化訊息傳遞鏈。因此,我們推測固定化柚皮苷提高了細胞與基材間的交互作用力,此一強作用力活化細胞骨架,進而協調貼附依賴性的信號傳導而提升骨細胞分化。


Naringin, a flavonoid available commonly in citrus fruits, is a HMG-CoA reductase inhibitor in osteoblastic cells. The promotion of bone formation by naringin has been proved in the previous studies, but naringin with high concentration would be cytotoxic. To control the concentration and duration of naringin, naringin was immobilized onto chitosan, a biocompatible material However, convectional crosslinkers, such as GA, are not biocompatible, resulting in difficulties in clinical applications. In this research, ozone treatment was thus applied to activate chitosan surfaces with radicals, followed by the immobilization of naringin after thermal induction. The amount of immobilized naringin was analyzed by UV spectra. The chitosan substrate with immobilized naringin was characterized by SEM and FTIR. Besides, the in vitro release of naringin from chitosan substrates in PBS for two weeks was also performed. The results indicated that naringin was successfully and efficiently grafted onto chitosan. It was also found that the immobilized naringin was slowly released, where the concentration of naringin in the medium was well controlled by this delivery process. The optimization of ozone treatment and naringin concentration was then carried out in this study.
The results of cell culture showed the cell activity, attachment and proliferation were promoted with the immobilized naringin on chitosan substrates. With sutiable naringin densities, the chitosan substrates showed no cytotoxicity. The marker of early osteogenic differentiation, ALPase expression, also increased. Besides, the osteogenic differentiation in middle and late stages were alos promoted by immobilized naringin, revealed by the increase in the expression of OCN and BSP. To further investigate the effects of immobilized naringin, the cytoskeleton projection of osteoblasts was observed under SEM. The results indicated that immobilized naringin enhanced cell spreading, and the lamellipodia was clearly formed on the chitosan substrates due to the naringin modification. The results from florescence staining also support that the actin filament in cytoskeleton was highly activated due to the immobilized naringin.The mechanical properties of osteoblasts measured with bioAFM indicates that the cell-substrate interforce greatly increased by naringin immobilization. The expression of Runx2 also proved the positive regulation of signal transduction induced by cytoskeleton activation. Thus, we interfere that the strong interforce caused by immobilized naringin activated cytoskeleton, which coordinated the anchorage-dependent signal transduction to enhance the osteogenic differentiation. . It would explain the mechanism that immobilized naringin was effective on the differentiation of osteoblasts.

摘要 II Abstract IV 目錄 VI 圖目錄 X 表目錄 XIX 專有名詞及縮寫 XX 第一章緒論 1 第二章文獻回顧 3 2.1 組織工程 3 2.2 生醫材料 5 2.3幾丁聚醣 7 2.3.1 幾丁聚醣於生醫材料應用 8 2.4表面改質技術 11 2.4.1 表面改質技術介紹 11 2.4.2 臭氧改質 14 2.5 柚皮苷 18 2.5.1柚皮苷應用 19 2.5.2柚皮苷對骨細胞之影響 24 2.6細胞力學 - 31 - 2.6.1細胞與細胞骨架(cytoskeleton) - 31 - 2.6.2量測細胞力學的工具 - 34 - 2.6.3原子力顯微鏡 (Atomic Force Microscopy, AFM) 36 2.6.4細胞貼附力之量測 39 2.7 骨母細胞分化標記 41 第三章實驗材料與方法 44 3.1 實驗目的 44 3.2 實驗藥品 44 3.3 實驗儀器 46 3.4 實驗步驟 47 3.4.1 幾丁聚醣薄膜之製備 47 3.4.2 臭氧改質 47 3.4.3 過氧化物含量測定 48 3.4.4 柚皮苷固定 49 3.4.5 材料清洗 50 3.4.6 釋放實驗 50 3.4.7體外細胞實驗 51 第四章實驗結果與討論 69 4.1臭氧改質最佳化 70 4.2控制釋放 73 4.3細胞於固定柚皮苷之幾丁聚醣上的活性表現 76 4.4細胞於固定柚皮苷之幾丁聚醣上的細胞分化標記 81 4.4.1鹼性磷酸酶(ALPase)分泌表現 81 4.4.2第一型膠原蛋白(COL1)分泌表現 85 4.4.3骨鈣素(OCN)分泌表現 89 4.4.4骨骼涎蛋白(BSP)分泌表現 92 4.5骨鈣質含量 95 4.6細胞於固定柚皮苷之幾丁聚醣上的型態觀察 98 4.7細胞於固定柚皮苷之幾丁聚醣上的之肌動蛋白骨架染色 110 4.8細胞與柚皮苷之間的貼附力 119 4.9 Runx2 (runt-related transcription factor 2)分泌表現 - 122 - 第五章結論 - 126 - 參考文獻 - 128 - 附錄 - 139 - 附錄A 鹼性磷酸酶檢量線 - 139 - 附錄B 臭氧產生機不同電壓產生之臭氧濃度 - 141 - 附錄C利用Image-J量測細胞面積 - 142 -

1. Li, Z., H.R. Ramay, K.D. Hauch, D. Xiao, and M. Zhang, Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials, 2005. 26(18): p. 3919-3928.
2. Zhang, Y., J.R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C.T. Lim, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 2008. 29(32): p. 4314-4322.
3. Lahiji, A., A. Sohrabi, D.S. Hungerford, and C.G. Frondoza, Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. Journal of biomedical materials research, 2000. 51(4): p. 586-595.
4. Dai, K.-r., S.-g. Yan, W.-q. Yan, D.-q. Chen, and Z.-w. Xu, Effects of naringin on the proliferation and osteogenic differentiation of human bone mesenchymal stem cell. European journal of pharmacology, 2009. 607(1): p. 1-5.
5. Wong, R.W.-K. and A.-B.M. Rabie, Bone induction using hydroxymethylglutaryl coenzyme A (HMG-CoA) reductase inhibitors. 2007.
6. Li, L., Z. Zeng, and G. Cai, Comparison of neoeriocitrin and naringin on proliferation and osteogenic differentiation in MC3T3-E1. Phytomedicine, 2011. 18(11): p. 985-989.
7. Wu, J.-B., Y.-C. Fong, H.-Y. Tsai, Y.-F. Chen, M. Tsuzuki, and C.-H. Tang, Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. European Journal of Pharmacology, 2008. 588(2–3): p. 333-341.
8. Wong, R.W.K. and A.B.M. Rabie, Effect of naringin on bone cells. Journal of Orthopaedic Research, 2006. 24(11): p. 2045-2050.
9. P, L.R.a.V.J., Tissue engineering. Science, 1993. 260: p. 920.
10. Hubbell, J.A., Biomaterials in tissue engineering. Nature Biotechnology, 1995. 13(6): p. 565-576.
11. Lucas-Clerc, C., C. Massart, J.P. Campion, B. Launois, and M. Nicol, Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Molecular and Cellular Endocrinology, 1993. 94(1): p. 9-20.
12. M. Sakamoto, H.T., K. Furuhata, Regioselective chlornation of chitin with N-chlorosuccinimide–triphenylphosphine under homogeneous conditions in lithium chloride–N,N-dimethylacetamide. Carbohydr. Res,, 1994. 271: p. 265.
13. H. Tseng, R.L., K. Furuhata, M. Sakamoto, Bromination of chitin with tribromoimidazole and triphenylphosphine in lithium bromide–dimethylacetamide. Sen-I Gakkaishi, 1995. 540: p. 51.
14. H. Tseng, K.F., M. Sakamoto, Bromination of regenerated chitin with N-bromosuccinimide and triphenylphosphine under homogeneous conditions in lithium bromide–N,N-dimethylacetamide. Carbohydr. Res,, 1995. 270: p. 149.
15. Liu, C. and R. Bai, Preparation of chitosan/cellulose acetate blend hollow fibers for adsorptive performance. Journal of membrane science, 2005. 267(1): p. 68-77.
16. Ravi Kumar, M.N., A review of chitin and chitosan applications. Reactive and functional polymers, 2000. 46(1): p. 1-27.
17. Pasparakis, G. and N. Bouropoulos, Swelling studies and in vitro release of verapamil from calcium alginate and calcium alginate–chitosan beads. International journal of pharmaceutics, 2006. 323(1): p. 34-42.
18. Kim, I.-Y., S.-J. Seo, H.-S. Moon, M.-K. Yoo, I.-Y. Park, B.-C. Kim, and C.-S. Cho, Chitosan and its derivatives for tissue engineering applications. Biotechnology advances, 2008. 26(1): p. 1-21.
19. Francis Suh, J.-K. and H.W. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): p. 2589-2598.
20. Ogino, M., F. Ohuchi, and L.L. Hench, Compositional dependence of the formation of calcium phosphate films on bioglass. Journal of biomedical materials research, 1980. 14(1): p. 55-64.
21. Chandy, T. and C.P. Sharma, Chitosan-as a biomaterial. Artificial Cells, Blood Substitutes and Biotechnology, 1990. 18(1): p. 1-24.
22. Muzzarelli, R.A., Biochemical significance of exogenous chitins and chitosans in animals and patients. Carbohydrate Polymers, 1993. 20(1): p. 7-16.
23. Jia, Z. and W. Xu, Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate Research, 2001. 333(1): p. 1-6.
24. Tan, S.C., E. Khor, T.K. Tan, and S.M. Wong, The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta, 1998. 45(4): p. 713-719.
25. Shahidi, F., J.K.V. Arachchi, and Y.-J. Jeon, Food applications of chitin and chitosans. Trends in Food Science & Technology, 1999. 10(2): p. 37-51.
26. Mao, J., L. Zhao, K. de Yao, Q. Shang, G. Yang, and Y. Cao, Study of novel chitosan‐gelatin artificial skin in vitro. Journal of Biomedical Materials Research Part A, 2003. 64(2): p. 301-308.
27. Salati, A., H. Keshvari, A. Karkhaneh, and S. Taranejoo, Design and fabrication of artificial skin: chitosan and gelatin immobilization on silicone by poly acrylic acid graft using a plasma surface modification method. Journal of Macromolecular Science, Part B, 2011. 50(10): p. 1972-1982.
28. Jayakumar, R., M. Prabaharan, P. Sudheesh Kumar, S. Nair, and H. Tamura, Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnology advances, 2011. 29(3): p. 322-337.
29. Gustafson, S.B., P. Fulkerson, R. Bildfell, L. Aguilera, and T.M. Hazzard, Chitosan dressing provides hemostasis in swine femoral arterial injury model. Prehospital Emergency Care, 2007. 11(2): p. 172-178.
30. Vongchan, P., W. Sajomsang, D. Subyen, and P. Kongtawelert, Anticoagulant activity of a sulfated chitosan. Carbohydrate research, 2002. 337(13): p. 1239-1242.
31. Genta, I., M. Costantini, A. Asti, B. Conti, and L. Montanari, Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres. Carbohydrate polymers, 1998. 36(2): p. 81-88.
32. Şenel, S., G. Ikinci, S. Kaş, A. Yousefi-Rad, M. Sargon, and A. Hıncal, Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery. International journal of pharmaceutics, 2000. 193(2): p. 197-203.
33. Krajewska, B., Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme and microbial technology, 2004. 35(2): p. 126-139.
34. Gamage, A. and F. Shahidi, Use of chitosan for the removal of metal ion contaminants and proteins from water. Food Chemistry, 2007. 104(3): p. 989-996.
35. Venkatesan, J. and S.-K. Kim, Chitosan composites for bone tissue engineering—An overview. Marine drugs, 2010. 8(8): p. 2252-2266.
36. Hu, Q., B. Li, M. Wang, and J. Shen, Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials, 2004. 25(5): p. 779-785.
37. Y, T.Y.a.I., Fibroblast growth on polymer surfaces and biosynthesis of collagen. . J Biomed Mater RES,, 1994. 28: p. 783-789.
38. Van Wachem, P., A. Hogt, T. Beugeling, J. Feijen, A. Bantjes, J. Detmers, and W. Van Aken, Adhesion of cultured human endothelial cells onto methacrylate polymers with varying surface wettability and charge. Biomaterials, 1987. 8(5): p. 323-328.
39. Garbassi, F., M. Morra, and E. Occhiello, Polymer surfaces: from physics to technology. 1994: Wiley Chichester.
40. Chan, C.-M., Polymer surface modification and characterization. 1993: Carl Hanser, GmbH & Co.
41. Nizam El-Din, H.M., M.F. Abou Taleb, and A.W.M. El-Naggar, Metal sorption and swelling characters of acrylic acid and sodium alginate based hydrogels synthesized by gamma irradiation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2008. 266(11): p. 2607-2613.
42. Hua, S. and A. Wang, Synthesis, characterization and swelling behaviors of sodium alginate-< i> g</i>-poly (acrylic acid)/sodium humate superabsorbent. Carbohydrate Polymers, 2009. 75(1): p. 79-84.
43. Kramer, P., Y. Yeh, and H. Yasuda, Low temperature plasma for the preparation of separation membranes. Journal of Membrane Science, 1989. 46(1): p. 1-28.
44. Wang, Y., J.-H. Kim, K.-H. Choo, Y.-S. Lee, and C.-H. Lee, Hydrophilic modification of polypropylene microfiltration membranes by ozone-induced graft polymerization. Journal of Membrane Science, 2000. 169(2): p. 269-276.
45. Tsai, C.-C., Y. Chang, H.-W. Sung, J.-C. Hsu, and C.-N. Chen, Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study. Biomaterials, 2001. 22(6): p. 523-533.
46. Dasgupta, S., Surface modification of polyolefins for hydrophilicity and bondability: Ozonization and grafting hydrophilic monomers on ozonized polyolefins. Journal of Applied Polymer Science, 1990. 41(1‐2): p. 233-248.
47. Karlsson, J. and P. Gatenholm, Solid-supported wettable hydrogels prepared by ozone induced grafting. Polymer, 1996. 37(19): p. 4251-4256.
48. Peeling, J., M.S. Jazzar, and D.T. Clark, An ESCA study of the surface ozonation of polystyrene film. Journal of Polymer Science: Polymer Chemistry Edition, 1982. 20(7): p. 1797-1805.
49. Tu, C.-Y., Y.-L. Liu, K.-R. Lee, and J.-Y. Lai, Surface grafting polymerization and modification on poly (tetrafluoroethylene) films by means of ozone treatment. Polymer, 2005. 46(18): p. 6976-6985.
50. Alsheyab, M.A. and A.H. Munoz, Comparative study of ozone and MnO< sub> 2</sub>/O< sub> 3</sub> effects on the elimination of TOC and COD of raw water at the Valmayor station. Desalination, 2007. 207(1): p. 179-183.
51. Aharoni S.M., P.D.C., and Schmitt G.J, Eur. Pat, 1979. 012316.
52. Chen, L.-C., Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone. Water Research, 2000. 34(3): p. 974-982.
53. Yuan, Y., J. Zhang, F. Ai, J. Yuan, J. Zhou, J. Shen, and S. Lin, Surface modification of SPEU films by ozone induced graft copolymerization to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces, 2003. 29(4): p. 247-256.
54. Park, J.C., Y.S. Hwang, J.E. Lee, K.D. Park, K. Matsumura, S.H. Hyon, and H. Suh, Type I atelocollagen grafting onto ozone‐treated polyurethane films: Cell attachment, proliferation, and collagen synthesis. Journal of biomedical materials research, 2000. 52(4): p. 669-677.
55. 羅棠楡(2010), 製備並分析具骨誘導性之臭氧改質聚乳酸多孔支架. 國立台灣科技大學化學工程所碩士論文,已出版,台北。.
56. Moad, G. and D.H. Solomon, The chemistry of radical polymerization. 2005: Elsevier.
57. Chuchin, A.Y., Free radical reactions of polyarylenealkylenes and their hydroperoxides. Review. Polymer Science USSR, 1979. 21(7): p. 1579-1618.
58. !!! INVALID CITATION !!!
59. Matyjaszewski, K. and T.P. Davis, Handbook of radical polymerization. 2002: Wiley Online Library.
60. Jeong, J.-C., B.-T. Lee, C.-H. Yoon, H.-M. Kim, and C.-H. Kim, Effects of< i> Drynariae rhizoma</i> on the proliferation of human bone cells and the immunomodulatory activity. Pharmacological research, 2005. 51(2): p. 125-136.
61. Wong, R., B. Rabie, M. Bendeus, and U. Hagg, The effects of Rhizoma Curculiginis and Rhizoma Drynariae extracts on bones. Chin Med, 2007. 2: p. 13.
62. Chen, L.-l., L.-h. Lei, P.-h. Ding, Q. Tang, and Y.-m. Wu, Osteogenic effect of< i> Drynariae rhizoma</i> extracts and< i> Naringin</i> on MC3T3-E1 cells and an induced rat alveolar bone resorption model. Archives of oral biology, 2011. 56(12): p. 1655-1662.
63. Middleton, E., C. Kandaswami, and T.C. Theoharides, The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological reviews, 2000. 52(4): p. 673-751.
64. Harborne, J.B. and C.A. Williams, Advances in flavonoid research since 1992. Phytochemistry, 2000. 55(6): p. 481-504.
65. Jagetia, G.C. and T.K. Reddy, Alleviation of iron induced oxidative stress by the grape fruit flavanone naringin in vitro. Chemico-biological interactions, 2011. 190(2): p. 121-128.
66. Gutteridge, J. and B. Halliwell, Free radicals and antioxidants in the year 2000: a historical look to the future. Annals of the New York Academy of Sciences, 2000. 899(1): p. 136-147.
67. Deng, W., X. Fang, and J. Wu, Flavonoids function as antioxidants: by scavenging reactive oxygen species or by chelating iron? Radiation Physics and Chemistry, 1997. 50(3): p. 271-276.
68. Bok, S.-H., Y.W. Shin, K.-H. Bae, T.-S. Jeong, Y.-K. Kwon, Y.B. Park, and M.-S. Choi, Effects of naringin and lovastatin on plasma and hepatic lipids in high-fat and high-cholesterol fed rats. Nutrition Research, 2000. 20(7): p. 1007-1015.
69. Kim, H.-J., G.T. Oh, Y.B. Park, M.-K. Lee, H.-J. Seo, and M.-S. Choi, Naringin alters the cholesterol biosynthesis and antioxidant enzyme activities in LDL receptor-knockout mice under cholesterol fed condition. Life sciences, 2004. 74(13): p. 1621-1634.
70. Jagetia, G.C., V. Venkatesha, and T.K. Reddy, Naringin, a citrus flavonone, protects against radiation-induced chromosome damage in mouse bone marrow. Mutagenesis, 2003. 18(4): p. 337-343.
71. Jagetia, G.C. and T.K. Reddy, The grapefruit flavanone naringin protects against the radiation-induced genomic instability in the mice bone marrow: a micronucleus study. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2002. 519(1): p. 37-48.
72. Attia, S.M., Abatement by naringin of lomefloxacin-induced genomic instability in mice. Mutagenesis, 2008. 23(6): p. 515-521.
73. Russo, A., R. Acquaviva, A. Campisi, V. Sorrenti, C. Di Giacomo, G. Virgata, M. Barcellona, and A. Vanella, Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors. Cell biology and toxicology, 2000. 16(2): p. 91-98.
74. Park, S.-H., E.-K. Park, and D.-H. Kim, Passive Cutaneous Anaphylaxis-Inhibitory Activity of Flavanones from< EM EMTYPE=. Planta medica, 2005. 71(01): p. 24-27.
75. Tsui, V., R. Wong, A. Rabie, and M. Bakr, The inhibitory effects of naringin on the growth of periodontal pathogens in vitro. Phytotherapy Research, 2008. 22(3): p. 401-406.
76. Guengerich, F.P., Mechanism-based inactivation of human liver microsomal cytochrome P-450 IIIA4 by gestodene. Chemical research in toxicology, 1990. 3(4): p. 363-371.
77. Jeon, S.-M., Y.B. Park, and M.-S. Choi, Antihypercholesterolemic property of naringin alters plasma and tissue lipids, cholesterol-regulating enzymes, fecal sterol and tissue morphology in rabbits. Clinical nutrition, 2004. 23(5): p. 1025-1034.
78. Le Marchand, L., S.P. Murphy, J.H. Hankin, L.R. Wilkens, and L.N. Kolonel, Intake of flavonoids and lung cancer. Journal of the National Cancer Institute, 2000. 92(2): p. 154-160.
79. Jung, U.J., M.-K. Lee, K.-S. Jeong, and M.-S. Choi, The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice. The journal of Nutrition, 2004. 134(10): p. 2499-2503.
80. Kanno, S.-i., A. Shouji, A. Tomizawa, T. Hiura, Y. Osanai, M. Ujibe, Y. Obara, N. Nakahata, and M. Ishikawa, Inhibitory effect of naringin on lipopolysaccharide (LPS)-induced endotoxin shock in mice and nitric oxide production in RAW 264.7 macrophages. Life sciences, 2006. 78(7): p. 673-681.
81. Pu, P., D.-M. Gao, S. Mohamed, J. Chen, J. Zhang, X.-Y. Zhou, N.-J. Zhou, J. Xie, and H. Jiang, Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Archives of biochemistry and biophysics, 2012. 518(1): p. 61-70.
82. Singh, D., V. Chander, and K. Chopra, Protective effect of naringin, a bioflavonoid on glycerol-induced acute renal failure in rat kidney. Toxicology, 2004. 201(1): p. 143-151.
83. Galati, E., M. Monforte, A. d’Aquino, N. Miceli, D. Di Mauro, and R. Sanogo, Effects of naringin on experimental ulcer in rats. Phytomedicine, 1998. 5(5): p. 361-366.
84. Habauzit, V., S.M. Sacco, A. Gil-Izquierdo, A. Trzeciakiewicz, C. Morand, D. Barron, S. Pinaud, E. Offord, and M.-N. Horcajada, Differential effects of two citrus flavanones on bone quality in senescent male rats in relation to their bioavailability and metabolism. Bone, 2011. 49(5): p. 1108-1116.
85. Wang, E.A., V. Rosen, P. Cordes, R.M. Hewick, M.J. Kriz, D.P. Luxenberg, B.S. Sibley, and J.M. Wozney, Purification and characterization of other distinct bone-inducing factors. Proceedings of the National Academy of Sciences, 1988. 85(24): p. 9484-9488.
86. Riley, E.H., Lane, J.M., Urist, M.R., Lyons, K.M., and Lieberman, J.R., Bone Morphogenetic Protein-2 clinical orthopaedics and related research. 1996. 324: p. 39-46.
87. Wong, R. and A. Rabie, Effect of Bio-OssR Collagen and Collagen Matrix on Bone Formation. The open biomedical engineering journal, 2010. 4: p. 71.
88. Katagiri, T., A. Yamaguchi, M. Komaki, E. Abe, N. Takahashi, T. Ikeda, V. Rosen, J.M. Wozney, A. Fujisawa-Sehara, and T. Suda, Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. The Journal of cell biology, 1994. 127(6): p. 1755-1766.
89. Boyle, W.J., W.S. Simonet, and D.L. Lacey, Osteoclast differentiation and activation. Nature, 2003. 423(6937): p. 337-342.
90. Ang, E.S., X. Yang, H. Chen, Q. Liu, M.H. Zheng, and J. Xu, Naringin abrogates osteoclastogenesis and bone resorption via the inhibition of RANKL-induced NF-κB and ERK activation. FEBS letters, 2011. 585(17): p. 2755-2762.
91. YU, H.-w., W.-n. GU, N. LI, F. ZHANG, X.-f. LIU, and H.-m. WEI, Research Progress of Naringin. Hubei Agricultural Sciences, 2011. 8: p. 005.
92. Pereira, R., N.E. Andrades, N. Paulino, A.C. Sawaya, M.N. Eberlin, M.C. Marcucci, G.M. Favero, E.M. Novak, and S.P. Bydlowski, Synthesis and characterization of a metal complex containing naringin and Cu, and its antioxidant, antimicrobial, antiinflammatory and tumor cell cytotoxicity. Molecules, 2007. 12(7): p. 1352-1366.
93. Yang, S.-P. and T.-M. Lee, The effect of substrate topography on hFOB cell behavior and initial cell adhesion evaluated by a cytodetacher. Journal of Materials Science: Materials in Medicine, 2011. 22(4): p. 1027-1036.
94. Simon, A. and M.-C. Durrieu, Strategies and results of atomic force microscopy in the study of cellular adhesion. Micron, 2006. 37(1): p. 1-13.
95. Fletcher, D.A. and R.D. Mullins, Cell mechanics and the cytoskeleton. Nature, 2010. 463(7280): p. 485-492.
96. Hsiao, S.C., A.K. Crow, W.A. Lam, C.R. Bertozzi, D.A. Fletcher, and M.B. Francis, DNA‐coated AFM cantilevers for the investigation of cell adhesion and the patterning of live cells. Angewandte Chemie International Edition, 2008. 47(44): p. 8473-8477.
97. Stevens, A.a.J.L., in Human Histology. Elsevier International Ltd 3th, Editor., 2006.
98. Ludwig, T., R. Kirmse, K. Poole, and U.S. Schwarz, Probing cellular microenvironments and tissue remodeling by atomic force microscopy. Pflugers Archiv-European Journal of Physiology, 2008. 456(1): p. 29-49.
99. Tan, J.L., J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, and C.S. Chen, Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proceedings of the National Academy of Sciences, 2003. 100(4): p. 1484-1489.
100. Daily, B., E.L. Elson, and G.I. Zahalak, Cell poking. Determination of the elastic area compressibility modulus of the erythrocyte membrane. Biophysical journal, 1984. 45(4): p. 671-682.
101. Hochmuth, R.M., Micropipette aspiration of living cells. Journal of biomechanics, 2000. 33(1): p. 15-22.
102. Ashkin, A., Acceleration and trapping of particles by radiation pressure. Physical review letters, 1970. 24(4): p. 156.
103. Ashkin, A., J. Dziedzic, and T. Yamane, Optical trapping and manipulation of single cells using infrared laser beams. Nature, 1987. 330(6150): p. 769-771.
104. Butt, H.-J., B. Cappella, and M. Kappl, Force measurements with the atomic force microscope: Technique, interpretation and applications. Surface science reports, 2005. 59(1): p. 1-152.
105. Puech, P.-H., K. Poole, D. Knebel, and D.J. Muller, A new technical approach to quantify cell–cell adhesion forces by AFM. Ultramicroscopy, 2006. 106(8): p. 637-644.
106. Hinterdorfer, P., W. Baumgartner, H.J. Gruber, K. Schilcher, and H. Schindler, Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proceedings of the National Academy of Sciences, 1996. 93(8): p. 3477-3481.
107. Keller, J.C., C.M. Stanford, J.P. Wightman, R.A. Draughn, and R. Zaharias, Characterizations of titanium implant surfaces. III. Journal of biomedical materials research, 1994. 28(8): p. 939-946.
108. Meyer, U., D. Szulczewski, K. Moller, H. Heide, D. Jones, U. Gross, P. Vanwachem, F. Bagamdisa, A. Dekker, and J. Davies, Attachment kinetics and differentiation of osteoblasts on different biomaterials. Cells and Materials, 1993. 3(2): p. 129-140.
109. De Santis, D., C. Guerriero, P. Nocini, A. Ungersbock, G. Richards, P. Gotte, and U. Armato, Adult human bone cells from jaw bones cultured on plasma-sprayed or polished surfaces of titanium or hydroxylapatite discs. Journal of Materials Science: Materials in Medicine, 1996. 7(1): p. 21-28.
110. Naji, A. and M.F. Harmand, Study of the effect of the surface state on the cytocompatibility of a Co‐Cr alloy using human osteoblasts and fibroblasts. Journal of biomedical materials research, 1990. 24(7): p. 861-871.
111. Howlett, C.R., M.D. Evans, W.R. Walsh, G. Johnson, and J.G. Steele, Mechanism of initial attachment of cells derived from human bone to commonly used prosthetic materials during cell culture. Biomaterials, 1994. 15(3): p. 213-222.
112. Puleo, D. and R. Bizios, Formation of focal contacts by osteoblasts cultured on orthopedic biomaterials. Journal of biomedical materials research, 1992. 26(3): p. 291-301.
113. Hunter, A., C. Archer, P. Walker, and G. Blunn, Attachment and proliferation of osteoblasts and fibroblasts on biomaterials for orthopaedic use. Biomaterials, 1995. 16(4): p. 287-295.
114. Stein, G.S., J.B. Lian, J.L. Stein, A.J. Van Wijnen, and M. Montecino, Transcriptional control of osteoblast growth and differentiation. Physiological reviews, 1996. 76(2): p. 593-629.
115. Fujimoto, K., Y. Takebayashi, H. Inoue, and Y. Ikada, Ozone‐induced graft polymerization onto polymer surface. Journal of Polymer Science Part A: Polymer Chemistry, 1993. 31(4): p. 1035-1043.
116. Frew, J.E., P. Jones, and G. Scholes, Spectrophotometric determination of hydrogen peroxide and organic hydropheroxides at low concentrations in aqueous solution. Analytica Chimica Acta, 1983. 155: p. 139-150.
117. Allen, A.O., C. Hochanadel, J. Ghormley, and T. Davis, Decomposition of water and aqueous solutions under mixed fast neutron and γ-radiation. The Journal of Physical Chemistry, 1952. 56(5): p. 575-586.
118. 邱梧森, 環型電極設計於電噴霧現象之研究發展. 成功大學航空太空工程學系學位論文, 2007: p. 1-86.
119. Chen, D.-R., D.Y. Pui, and S.L. Kaufman, Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. Journal of Aerosol Science, 1995. 26(6): p. 963-977.
120. Gomez, A. and K. Tang, Charge and fission of droplets in electrostatic sprays. Physics of Fluids (1994-present), 1994. 6(1): p. 404-414.
121. Ko, Y.G., Y.H. Kim, K.D. Park, H.J. Lee, W.K. Lee, H.D. Park, S.H. Kim, G.S. Lee, and D.J. Ahn, Immobilization of poly (ethylene glycol) or its sulfonate onto polymer surfaces by ozone oxidation. Biomaterials, 2001. 22(15): p. 2115-2123.
122. Brondino, C., B. Boutevin, J.P. Parisi, and J. Schrynemackers, Adhesive properties onto galvanized steel plates of grafted poly (vinylidene fluoride) powders with phosphonated acrylates. Journal of applied polymer science, 1999. 72(5): p. 611-620.
123. Seo, S., J. King, and W. Prinyawiwatkul, Simultaneous depolymerization and decolorization of chitosan by ozone treatment. Journal of food science, 2007. 72(9): p. C522-C526.
124. Uhrich, K.E., S.M. Cannizzaro, R.S. Langer, and K.M. Shakesheff, Polymeric systems for controlled drug release. Chemical reviews, 1999. 99(11): p. 3181-3198.
125. Tran, N. and T.J. Webster, Increased osteoblast functions in the presence of hydroxyapatite-coated iron oxide nanoparticles. Acta Biomaterialia, 2011. 7(3): p. 1298-1306.
126. Ramires, P., A. Giuffrida, and E. Milella, Three-dimensional reconstruction of confocal laser microscopy images to study the behaviour of osteoblastic cells grown on biomaterials. Biomaterials, 2002. 23(2): p. 397-406.
127. Burdick, J.A. and K.S. Anseth, Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials, 2002. 23(22): p. 4315-4323.
128. Shah, A.K., J. Lazatin, R.K. Sinha, T. Lennox, N.J. Hickok, and R.S. Tuan, Mechanism of BMP‐2 stimulated adhesion of osteoblastic cells to titanium alloy. Biology of the Cell, 1999. 91(2): p. 131-142.
129. Wu, J.-B., Y.-C. Fong, H.-Y. Tsai, Y.-F. Chen, M. Tsuzuki, and C.-H. Tang, Naringin-induced bone morphogenetic protein-2 expression via PI3K, Akt, c-Fos/c-Jun and AP-1 pathway in osteoblasts. European journal of pharmacology, 2008. 588(2): p. 333-341.
130. Boyan, B.D., T.W. Hummert, D.D. Dean, and Z. Schwartz, Role of material surfaces in regulating bone and cartilage cell response. Biomaterials, 1996. 17(2): p. 137-146.
131. Kim, H.-W., H.-E. Kim, and V. Salih, Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin–hydroxyapatite for tissue engineering scaffolds. Biomaterials, 2005. 26(25): p. 5221-5230.
132. Hawse, J., M. Subramaniam, J. Ingle, M. Oursler, N. Rajamannan, and T. Spelsberg, Estrogen‐TGFβ cross‐talk in bone and other cell types: Role of TIEG, Runx2, and other transcription factors. Journal of cellular biochemistry, 2008. 103(2): p. 383-392.
133. Ho, W.P., W.P. Chan, M.S. Hsieh, and R.M. Chen, Runx2‐mediated bcl‐2 gene expression contributes to nitric oxide protection against hydrogen peroxide‐induced osteoblast apoptosis. Journal of cellular biochemistry, 2009. 108(5): p. 1084-1093.
134. Inman, C.K. and P. Shore, The osteoblast transcription factor Runx2 is expressed in mammary epithelial cells and mediates osteopontin expression. Journal of Biological Chemistry, 2003. 278(49): p. 48684-48689.
135. Higuchi, A., Q.-D. Ling, Y. Chang, S.-T. Hsu, and A. Umezawa, Physical cues of biomaterials guide stem cell differentiation fate. Chemical reviews, 2013. 113(5): p. 3297-3328.

QR CODE