簡易檢索 / 詳目顯示

研究生: 盧泓儒
Hong-Ru Lu
論文名稱: 後傾式離心扇之流場模擬與性能改善
Performance Enhancement of a BI Centrifugal Fan with Airfoil Blades
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
Cheng-Fang Chen
楊旭光
Shiu-Kuang Yang
周永泰
Yung-Tai Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 244
中文關鍵詞: 後傾式離心扇入口角出口角NACA葉片流場數值模擬導流板
外文關鍵詞: backward-inclined centrifugal fan, leading-edge angle, trailing-edge angle, NACA airfoil, CFD simulation, guide plate
相關次數: 點閱:314下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  運輸是經濟發展過程中相當重要的基礎設施,其中由鋼軌引導鋼輪行進的軌道運輸系統,由於運輸量大、安全性高、消耗能源少等特性,使其在大眾運輸服務中扮演重要的角色,在都會區的捷運系統就是個典型例子。由於車廂內常載滿旅客,常藉著空調系統使車廂空氣流通維持舒適度,其中風扇的效能是最重要影響因素,故風扇性能提升即成為本研究之目標。本文以葉輪外徑252 mm、高度84.3 mm之後傾式離心扇為對象,探討其安裝於捷運車廂內部環境,在2,800 rpm轉速之流場特性與性能分析,同時使用CFD軟體FLUENT進行模擬計算與流場可視化;首先,針對原始模型進行流場分析,選定扇葉入口角、出口角、外殼尺寸、以及葉片類型作為變數,並將工質設定在室溫25℃、轉速2,800 rpm下,觀察其出口流量以及效率,藉此判斷上述變數對整體效能之影響。
  本改良研究分成箱體流線化與葉輪改良設計兩部分,在箱體流線化包括空間縮減、流道改良、角落改良等三方向,針對箱體進行導板加裝之規劃;再將各方案的最佳導板在不互相影響下做整合,最終完成的最佳箱體可將流量提升7.01%、效率提升4.61%。至於葉輪改良設計中,分成葉片類型探討與葉片角度優化,透過葉片類型的評估改進,本研究選用NACA-44與NACA-6系列之機翼外形做為新葉輪之葉片,而葉片角度範圍則是出口角從45°至50°、入口角從30°至40°做評估;經由數值模擬結果顯示,以NACA-6508機翼葉片可以產生最高之整體風扇效率,同時,將原始的入口角60°、出口角15°分別修改成入口角35°、出口角50°,則可以提升整體離心扇之流量,將葉輪優化之後,可使整體風扇之流量提升33.54%、效率提升6.57%。最後,將上述兩部分的最佳方案進行組裝,最佳箱體與最佳葉輪之組裝可使整體風扇之流量提升44.52%、效率提升12.43%;綜合而言,本研究成功地建構一套優化風機性能的系統,可據以完成通風系統的離心風扇之性能提升,亦可應用於各種型式之風扇優化。


Mass rapid transit (MRT) system is considered as an essential infrastructure for relieving the traffic challenge in metropolitan city. To ensure a comfortable environment, the passenger cabin is equipped with an effective ventilation system, which is powered by a centrifugal fan. Thus, performance enhancement of radial-flow fan is in great demand and become the target of this work. At first, the original centrifugal impeller (252 mm diameter and 84.3 mm height) is installed inside an untraditional housing, which is a near rectangular space with the airstream inlet and outlet on the neighboring side plates. Next, the associated flow simulation is executed numerically and observed carefully on this ventilation unit running at 2,800 rpm to identify the adverse flow patterns for potential modification. As a result, due to the lack of spiral housing, it is found that the airstream spreads out of rotor in all directions. Also, most of the high-pressure airflows bounce back from wall to proceed into the lower part of case for discharging through the outlet port. Accordingly, adverse flow phenomena are found in all housing corners and lower portion beneath the rotor, especially close to the outlet.
Afterwards, this research proposes several guiding plates for streamlining the casing geometry and enlarging the outflow path to eliminate the serious circulations. Successively, parametric study on the impeller is enforced to enhance the flow rate and static efficiency of this ventilation unit. Subsequently, CFD calculations indicate that streamlined case can increase the flow rate and static efficiency by 7.01% and 4.61%, respectively. Regarding the rotor redesign, 33.54% and 6.57% enlargements on airflow and efficiency are obtained by introducing NACA-6508 airfoil blade and adjusting blade inlet and outlet angles to 35 and 50. Consequently, the above two approaches are integrated to construct an optimized design. Also, numerical outcome shows that this optimized ventilation unit with airfoil blade and streamlined case results in a significant 44.52% improvement on flow rate and a fair 12.43% upgrade on efficiency. In conclusion, this thesis successfully establishes a systematic scheme to analyze the flow pattern and enhance the aerodynamic performance of a ventilation unit powered by a centrifugal fan.

摘要 iii Abstract v 目錄 vii 圖索引 xi 表索引 xvi 符號索引 xviii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 離心式風機 7 1.2.2 數值模擬 15 1.3 研究動機與方法 17 第二章 葉輪簡介 23 2.1 離心扇之葉輪設計 23 2.1.1 常用之離心式工業葉片 25 2.1.2 離心風機之型式 30 2.2 風機外殼設計 31 第三章 數值方法 34 3.1 流場統御方程式 36 3.2 數值計算模式及邊界條件 38 3.2.1 紊流模式 39 3.2.2 壁面函數 41 3.3 數值方法 45 3.3.1 離散法則 45 3.3.2 上風差分法(Upwind Differentiating) 46 3.3.3 SIMPLE法理論 48 3.4 風扇網格建立 51 3.5 數值邊界條件之設定 58 3.6 網格獨立性之驗證 62 第四章 箱體流線化之設計 67 4.1 原始模型之模擬分析 67 4.1.1 模型建立及網格規劃 68 4.1.2 原始模型之模擬結果與流場分析 82 4.2 箱體空間縮減之改良方案 88 4.3 箱體流道之改良方案 92 4.3.1 水平型導板與原始箱體之流場和性能比較 100 4.3.2 凸出型導板與原始箱體之流場和性能比較 100 4.3.3 凹入型導板與原始箱體之流場和性能比較 104 4.3.4 斜面型式導板與原始箱體之流場比較 108 4.3.5 最終箱體流道改良之導板 116 4.4 箱體角落之改良方案 116 4.5 箱體改良方案之整合設計 124 第五章 葉輪之改良設計 132 5.1 原始葉輪之模擬分析 132 5.1.1 葉輪之模型建立和網格劃分 132 5.1.2 原始葉輪之模擬流場分析 138 5.2 不同型式葉片安裝於離心扇之模擬評比 141 5.2.1 徑向式葉片 142 5.2.2 後傾式之直葉片 144 5.2.3 末端徑向式葉片 151 5.3 NACA翼形介紹 156 5.3.1 翼剖面參數 157 5.3.2 翼形之模型製作 161 5.4 NACA葉輪改良 164 5.4.1 葉片之出、入口角 168 5.4.2 第一組葉片角度之改良方案(β1 = 30°、β2 = 45°) 177 5.4.3 第二組葉片角度之改良方案(β1 = 35°、β2 = 50°) 188 5.4.4 第三組葉片角度之改良方案(β1 = 40°、β2 = 50°) 197 第六章 結論 214 6.1 各改良設計之總結 214 6.2 建議與討論 217 參考文獻 222

1. 臺北大眾捷運運輸股份有限公司,"臺北捷運公司運量統計表",2020。https://www.metro.taipei/Content_List.aspx?n=AA6F5295C6973AEB

2. Eck, B., "Fans; design and operation of centrifugal, axial-flow, and cross-flow fans", Pergamon, 1973.

3. Bowerman, R., "Effect of the volute on performance of a centrifugal pump impeller", Transaction of the ASME, Vol. 79, pp. 1057-1069, 1955.

4. Gardow, E., B., "On the relationship between impeller exit velocity distribution and bladechannel flow in a centrifugal fan", Ph. D. Thesis, State University of New York at Bafflo, 1969.

5. Leidel, W., "Einfluss von zungenabstand und zungenradius auf kennlinie und gereausch eines radial ventilators", DLR-FB, pp.61-69, 1969.

6. Morinushi, K., "The influence of geometric parameters on FC centrifugal fan noise", Journal of Vibration and Acoustics, Vol. 109, pp. 227-234, 1987.

7. Lin, S. C., "A novel FC centrifugal fan design for improved performance", Technical Report, Tennessee Technological University, 1982.

8. Liu, C., Vafidis, C., and Whitelaw, J., "Flow characteristics of a centrifugal pump", Journal of Fluid Engineering, Vol. 116, pp. 303-309, 1994.

9. Downie, R., Thompson, M., and Wallis, R., "An engineering approach to blade designs for low to medium pressure rise rotor-only axial fans", Experimental thermal and fluid science, Vol. 6, No. 4, pp. 376-401, 1993.

10. Huang, J.-d., Yin, M., and Deng, Q., "Effects of concealed motor's shape on the performance of forword multi-blade centrifugal fans", Journal-Shanghai Jiaotong University-Chinese Edition, Vol. 35, No. 8, pp. 1196-1199, 2001.

11. 孫鈞瑋,"前傾式離心風機數值與實驗之整合研究",國立臺灣科技大學機械工程技術研究所碩士論文,2004年。

12. Yu, Z., Li, S., He, W., Wang, W., Huang, D., and Zhu, Z., "Numerical simulation of flow field for a whole centrifugal fan and analysis of the effects of blade inlet angle and impeller gap", HVAC&R Research, Vol. 11, No. 2, pp. 263-283, 2005.

13. Liu, X., Dang, Q., and Xi, G., "Performance improvement of centrifugal fan by using CFD", Engineering Applications of Computational Fluid Mechanics, Vol. 2, No. 2, pp. 130-140, 2008.

14. Chunxi, L., Ling, W. S., and Yakui, J., "The performance of a centrifugal fan with enlarged impeller", Energy Conversion and Management, Vol. 52, No. 8-9, pp. 2902-2910, 2011.

15. Singh, O., "Parametric study of centrifugal fan performance", International Journal of Advances in Engineering and Technology, Vol. 3, No. 2, p. 33-50, 2012.

16. Jayapragasan, C., Suryawanshi, S. J., and Reddy, K. J., "Design optimization of centrifugal fan of travelling cleaner", ARPN Journal of Engineering and Applied Sciences, Vol. 9, No. 9, pp. 1637-1644, 2014.

17. Zahariea, D., "Comparative study of blade shape design of centrifugal fan impeller", Applied Mechanics and Materials, Vol. 657, pp. 619-623, 2014.

18. Lee, Y. T. and Lim, H. C., "Performance assessment of various fan ribs inside a centrifugal blower", Energy, Vol. 94, pp. 609-622, 2016.

19. Chen, G., Xu, W., Zhao, J., and Zhang, H., "Energy-saving performance of flap-adjustment-based centrifugal fan", Energies, Vol. 11, No. 1, p. 162-176, 2018.

20. Moller, P., "A radial diffuser using incompressible flow between narrowly spaced disks", Journal of Fluids Engineering, Vol. 88, pp. 155-162, 1966.

21. Raj, D. and Swim, W., "Measurements of the mean flow velocity and velocity fluctuations at the exit of an FC centrifugal fan rotor", Journal of Engineering for Gas Turbines and Power, Vol. 103, pp. 393-399, 1981.

22. Kjork, A. and Lofdahl, L., "Hot-wire measurements inside a centrifugal fan impeller", Journal of Fluid Engineering, Vol. 111, pp. 363-368, 1989.

23. Gu, F., Engeda, A., Cave, M., and Di, Liberti, J.-L., "A numerical investigation on the volute/diffuser interaction due to the axial distortion at the impeller exit", J. Fluids Eng, Vol. 123, No. 3, pp. 475-483, 2001.

24. Nurzia, F. and Puddu, P., "Experimental investigation of secondary flows in a low hub-tip ratio fan", Turbo Expo: Power for Land, Sea, and Air., Vol. 1, pp. 1-10, 1994,.

25. Puddu, P. "Tip leakage flow characteristics downstream of an axial flow fan", Turbo Expo: Power for Land, Sea, and Air, ASME, Vol. 1, pp. 78-2, 1996.

26. Su, M., Gu, C., and Miao, Y., "Numerical study of viscous flow field in mixed-flow fan", Journal-Xian Jiaotong University, Vol. 30, pp. 55-63, 1996.

27. 黃家烈,"筆記型電腦散熱風扇之研究",國立台灣科技大學機械工程技術研究所博士論文,2001年。.

28. 許豐麟, "新式筆記型電腦冷卻風扇之數值模擬",國立台灣科技大學機械工程技術研究所碩士論文,2000年。

29. 謝旻翰,"風機濾網機組之流場數值分析",國立台灣科技大學機械工程技術研究所碩士論文,2007年。

30. Bleier F. P., "Fan handbook: selection, application, and design", McGraw-Hill, 1998.

31. 游裕傑,"離心式電腦風扇的設計與分析",國立台灣成功大學機械研究所碩士論文,2002年。

32. Manual, U., "Fluent 17.2 documentation", Fluent Inc, 2016.

33. Launder, B. E. and Spalding D. B., "The numerical computation of turbulent flows", Numerical prediction of flow, heat transfer, turbulence and combustion, Elsevier, pp. 96-116,1983.

無法下載圖示 全文公開日期 2026/05/03 (校內網路)
全文公開日期 2029/05/03 (校外網路)
全文公開日期 2029/05/03 (國家圖書館:臺灣博碩士論文系統)
QR CODE