簡易檢索 / 詳目顯示

研究生: 蕭竣尹
JYUN-YIN SIAO
論文名稱: 非水溶性藍藻蛋白與玻尿酸/聚谷氨酸自組裝聚電解質薄膜特性分析
Properties of hyaluronic acid/insoluble cyanophcin and polyglutamic acid /insoluble cyanophcin self-assembled polyelectrolyte films
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 林析右
Shi-Yow Lin
方翠筠
Tsuei-Yun Fang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 149
中文關鍵詞: 自組裝層對層薄膜聚電解質薄膜
外文關鍵詞: Self-assembled, Layer-by-Layer films (LBL), Polyelectrolytesmultilayer (PEM)
相關次數: 點閱:594下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

自組裝單分子膜 (self-assembly monolayer, SAM) 為近年來受到廣泛探討及應用之技術。 本研究使用帶 Synechocystis sp.PCC6803 cphA 的 E.coli BL21-CodonPlus(DE3)-RIL 製備的非水溶性藍藻蛋白,分別與聚谷胺酸和玻尿酸自組裝成膜,非水溶性藍藻蛋白含有大量的精胺酸與離胺酸,為聚陽離子;聚谷胺酸與玻尿酸,為聚陰離子。利用靜電力使兩分子相吸,依不同的成膜方式分為兩種,一種為粒子間隨機相互吸附沉降成膜的共沉澱法;另一種為於玻璃基材上,一層接著一層,正負電荷排列的層對層自組裝薄膜。
利用 FT -IR (ATR) 觀察成膜後官能基的變化,使用口測試(Sakaguchi test) 測量非水溶性藍藻蛋白的含量,並以掃描式電子顯微鏡 (SEM) 與原子力顯微鏡 (AFM) 探討其表面型態與粗糙度。將L929 細胞進行初步的細胞生長測試,再將人體的纖維母細胞 Hs68 培養於薄膜,以 MTT assay 測試細胞於薄膜上的生長情形。最後利用L929 做細胞遷移測試,模擬傷口復原程度,來判斷薄膜對細胞遷移能力的影響。
結果顯示藉由比色法與官能基證實,將玻尿酸或聚谷氨酸的製作比例提高,有助於提高薄膜中非水溶性藍藻蛋白含量,而玻尿酸/非水溶性藍藻蛋白製作的共沉澱薄膜與層對層薄膜厚度與粗糙度皆低於聚谷氨酸/非水溶性藍藻蛋白薄膜,比較細胞生長情形與細胞遷移能力以玻尿酸/非水溶性藍藻蛋白薄膜效果最佳,以口試驗換算薄膜中非水溶性藍藻蛋白含量,發現膜中非水溶性藍藻蛋白含量越高,有助於細胞生長。


In recent years, self-assembled monolayer (SAM) technology has
found a wide variety of applications in both nanotechnology and
biomedical fields. In this study , we used two kinds of sources to prepare
self-assembled films. One is the combination of hyaluronic acid and
insoluble cyanophycin, which was obtained by cultivating Escherichia coli
carrying BL21-CodonPlus (DE3)-RIL with Synechocystis sp. PCC6803
cphA. The other one is composed of poly-glutamic acid and insoluble
cyanophycin. Insoluble cyanophycin, containing arginine and lysine, is a
cationic polyelectrolyte, whereas poly-glutamic acid and hyaluronic acid
are anionic polyelectrolytes. Therefore, they can be adsorbed onto each
other due to electrostatic interactions. The film preparation was carried out
by two methods. One was co-precipitation method based on random
adsorption. The other one was layer-by-layer self-assembled method,
which was made of the deposition of alternating charged polyelectrolytes.
The changes in function groups were examined by FTIR (ATR). The
conjugates were analyzed by a colorimetric method, the Sakaguchi test, to
measure the contents of the insoluble cyanophycin. And scanning electron
microscopy (SEM) and atomic force microscopy (AFM) were used to
measure the surface roughness and morphology. The L929 cells and Hs68
fibroblasts were employed to test cell growth. The L929 cells were further
to examine the efficiency of cell migration for a wound recovery.
The results based on the colorimetric method showed that a high
amount of hyaluronic acid or (poly-glutamic acid) was associated with a
high amount of insoluble cyanophycin. The film thickness and roughness
IV
were better for the use of hyaluronic acid and insoluble cyanophycin. For
cell growth and cell migration, (hyaluronic acid)/ (insoluble cyanophycin)
by the co-precipitation method can produce better films compared to the
others. The results of insoluble cyanophycin content analyzed by the
colorimetric method in the films showed that the more cyanophycin
content in the films, the better condition for cell to grow.

中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖目錄 X 表目錄 XIX 一、緒論 1 二、文獻回顧 3 2.1 自組裝 3 2.1.1自組裝分子薄膜 3 2.1.2層對層的自組裝薄膜製備 5 2.2藍藻蛋白 8 2.2.1藍藻蛋白的簡介 8 2.2.2藍藻蛋白結構 9 2.2.3藍藻蛋白的生產 9 2.2.4藍藻蛋白的應用 11 2.3玻尿酸 12 2.3.1 玻尿酸簡介 12 2.3.2玻尿酸結構 12 2.3.3玻尿酸生產 13 2.3.4玻尿酸應用 13 2.4 聚谷氨酸 14 2.4.1聚谷氨酸簡介 14 2.4.2聚谷氨酸結構 14 2.4.3聚谷氨酸生產 15 2.4.4聚谷氨酸應用 15 三、實驗材料與方法 17 3.1實驗材料 17 3.1.1 菌株 17 3.1.2 抗生素 17 3.1.3 細胞株 17 3.2實驗藥品 17 3.3藥品配製 19 3.4實驗儀器 25 3.5實驗步驟 25 3.5.1菌株培養 25 3.5.2 SDS-PAGE (菌株) 28 3.5.3純化藍藻蛋白 30 3.5.4 SDS-PAGE (蛋白質) 32 3.5.5 共沉澱薄膜製備 33 3.5.6 層對層自組裝薄膜 34 3.5.7 非水溶性藍藻蛋白含量測定 35 3.5.8 動物細胞於薄膜生長情形 35 3.5.9 動物細胞於薄膜生長校正曲線 35 3.5.10 細胞遷移測試 36 四、 結果與討論 37 4.1 薄膜製備與分析 37 4.1.1共沉澱薄膜製備 (Co-precipitation films) 37 4.1.2層對層的自組裝薄膜製備 (Layer-by-layer self-assembly films) 40 4.1.3 非水溶性藍藻蛋白含量測定 42 4.1.4共沉澱薄膜與層對層的自組裝薄膜官能基鑑定 47 4.1.5共沉澱與層對層的自組裝薄膜形態分析 51 4.2動物細胞於薄膜貼附與生長情形 60 4.2.1細胞L929於共沉澱與層對層的自組裝薄膜細胞生長情形 60 4.2.2細胞Hs68於共沉澱與層對層的自組裝薄膜細胞生長情形 66 4.3共沉澱與層對層的自組裝薄膜細胞遷移分析 72 4.3.1共沉澱薄膜細胞遷移分析 73 4.3.2層對層的自組裝薄膜細胞遷移分析 74 4.3.3共沉澱與層對層的自組裝薄膜細胞遷移分析 76 結論與未來展望 78 附錄 80 附錄一 表面粗糙度2D圖 80 附錄二 MTT細胞圖 83 附錄三 Cell Migration 122 附錄四-接觸角測定 142 參考文獻 144

1. Lehn, J.M., Toward self-organization and complex matter. Science, 2002. 295(5564): p. 2400-3.
2. Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science, 1997. 277(5330): p. 1232-1237.
3. TREDGOLD, R.H., Order in thin organic films. 1994: p. 116~128.
4. Grzybowski, G.M.W.a.B., Self-Assembly at All Scales. 2002.
5. Ariga, K., Organized Organic Ultrathin Films. 2013.
6. Ulman, A., An introlduction to ultrathin organic films from Langmuir-Blodgett to Self-Assembly. 1991.
7. Yamada, N., et al., Die Bildung von Riesenliposomen aus kristallinen Komplexen von Monoalkylammoniumtensiden und 4-Hydroxybiphenyl. Angewandte Chemie, 1999. 111(7): p. 969-972.
8. Insung S. Choi, X.L., Eric E. Simanek, Ryoichi Akaba, and and G.M. Whitesides, Self-assembly of hydrogen-bonded polymeric rods based on the cyanuric acid‚melamine aattice. 1998.
9. Borges, J. and J.F. Mano, Molecular interactions driving the layer-by-layer assembly of multilayers. Chem Rev, 2014. 114(18): p. 8883-942.
10. Joshi, M., et al., Chitosan nanocoating on cotton textile substrate using layer-by-layer self-assembly technique. Journal of Applied Polymer Science, 2011. 119(5): p. 2793-2799.
11. Detzel, C.J., A.L. Larkin, and P. Rajagopalan, Polyelectrolyte multilayers in tissue engineering. Tissue Eng Part B Rev, 2011. 17(2): p. 101-13.
12. Richardson, J.J., M. Bjornmalm, and F. Caruso, Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms. Science, 2015. 348(6233): p. aaa2491.
13. Gentile, P., et al., Layer-by-layer assembly for biomedical applications in the last decade. Nanotechnology, 2015. 26(42): p. 422001.
14. Borzi, A., Le comunicazioni intracellulari delle Nostochinee. Malpighia,, 1987: p. 174-203.
15. Dembinska M.E., a.M.A., Cyanophycin Granule Size Variation in Aphanocapsa. Journal of General Microbiology 1988: p. 295-298.
16. Mooibroek, H., et al., Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production. Appl Microbiol Biotechnol, 2007. 77(2): p. 257-67.
17. Hannig, G. and S.C. Makrides, Strategies for optimizing heterologous protein expression in Escherichia coli. Trends in Biotechnology, 1998. 16(2): p. 54-60.
18. Aboulmagd, E., F.B. Oppermann-Sanio, and A. Steinbüchel, Molecular characterization of the cyanophycin synthetase from Synechocystis sp. strain PCC6308. Archives of Microbiology, 2000. 174(5): p. 297-306.
19. Roweton, S., S.J. Huang, and G. Swift, Poly(aspartic acid): Synthesis, biodegradation, and current applications. Journal of Environmental Polymer Degradation, 1997. 5(3): p. 175-181.
20. Mizuno, A., et al., Endothelial stunning and myocyte recovery after reperfusion of jeopardized muscle: A role of l-arginine blood cardioplegia. The Journal of Thoracic and Cardiovascular Surgery, 1997. 113(2): p. 379-389.
21. Gao, G., et al., Determination of lysine pK values using lysine: application to the lyase domain of DNA Pol beta. J Am Chem Soc, 2006. 128(25): p. 8104-5.
22. Yoshida, T. and T. Nagasawa, Epsilon-Poly-L-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol, 2003. 62(1): p. 21-6.
23. Sallam, A. and A. Steinbuchel, Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production. Appl Microbiol Biotechnol, 2010. 87(3): p. 815-28.
24. Weissmann, B.a.M., Karl, The Structure of Hyalobiuronic Acid and of Hyaluronic Acid from Umbilical Cord1,2. Journal of the American Chemical Society, 1954. 76(7): p. 1753-1757.
25. Weissmann, B., Meyer, Karl, The Structure of Hyalobiuronic Acid and of Hyaluronic Acid from Umbilical Cord1,2. Journal of the American Chemical Society, 1954. 76(7): p. 1753-1757.
26. Baier Leach, J., et al., Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng, 2003. 82(5): p. 578-89.
27. Sung, M.H., et al., Natural and edible biopolymer poly-gamma-glutamic acid: synthesis, production, and applications. Chem Rec, 2005. 5(6): p. 352-66.
28. Shih, I.-L. and Y.-T. Van, The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 2001. 79(3): p. 207-225.
29. Hara, T., Y. Fuzio, S. Ueda Polyglutamate production by Bacillus subtilis (natto) J. Appl. Biochem. 4. 1982.
30. Ho, G.H., Ho, T.I., Hsieh, K.H., Su, Y.C., Lin, P.Y., Yang, J., Yang, K.H., Yang, S.C, (c-polyglutamic acid produced by Bacillus subtilis (natto): structural characteristics, chemical properties and biological functionalities. 2006.
31. Wytrwal, M., et al., Growth and motility of human skin fibroblasts on multilayer strong polyelectrolyte films. J Colloid Interface Sci, 2016. 461: p. 305-16.
32. Zhang, J., et al., Natural polyelectrolyte films based on layer-by layer deposition of collagen and hyaluronic acid. Biomaterials, 2005. 26(16): p. 3353-61.
33. Antunes, J.C., et al., Layer-by-layer self-assembly of chitosan and poly(gamma-glutamic acid) into polyelectrolyte complexes. Biomacromolecules, 2011. 12(12): p. 4183-95.
34. Richert, L., et al., Layer by Layer Buildup of Polysaccharide Films: Physical Chemistry and Cellular Adhesion Aspects. Langmuir, 2004. 20(2): p. 448-458.
35. Gilar, M., et al., Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. Journal of Separation Science, 2005. 28(14): p. 1694-1703.
36. MARTIN F., C., The use of ninhydrin as a reagent for the reversible modification of arginine residues in proteins. 1976: p. 457-459.
37. Hillberg, A.L., C.A. Holmes, and M. Tabrizian, Effect of genipin cross-linking on the cellular adhesion properties of layer-by-layer assembled polyelectrolyte films. Biomaterials, 2009. 30(27): p. 4463-70.
38. Almodovar, J., et al., Gradients of physical and biochemical cues on polyelectrolyte multilayer films generated via microfluidics. Lab Chip, 2013. 13(8): p. 1562-70.
39. Izumii, Y., New Sakaguchi Reaction 1965: p. 218-226
40. Messineo, L., Modification of the Sakaguchi Reaction: Spectrophotometric determination of arginine in proteins without previous hydrolysis 1966: p. 534-540.
41. Wu, C., A Method for the Determination of Guanidoacetic Acid and Arginine in Biological Fluids. 1959: p. 461-470.
42. Thorien., E.J.a.S., The use of the Sakaguchi reaction for the quantitative determination of arginine. 1932.
43. Dauphinee, A.h.a.j.A., The arginase method for the determination of arginie and its use in the analysis of proteins. 1929.
44. Weber, C.J., A modification of SKAGUCHI's reaction for the quantitative determination of arginine. 1992.
45. Anthony A, A., Jane E. Frankston, The colorimetric determination of arginine in protein hydrolysates and human urine. 1945.
46. Nakanishi, K.j., Infrared absorption spectroscopy, practical. 1962.
47. Zhong, Q., et al., Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Science Letters, 1993. 290(1-2): p. L688-L692.
48. Lapshin, R.V., Automatic drift elimination in probe microscope images based on techniques of counter-scanning and topography feature recognition. Measurement Science and Technology, 2007. 18(3): p. 907-927.
49. Bennett, J.M., Lars, Introduction to Surface Roughness and Scattering. 1989.
50. Poon, C.Y. and B. Bhushan, Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear, 1995. 190(1): p. 76-88.
51. Luscombe, P.R.T.a.M., PMC2002206. 1987.
52. Fotakis, G. and J.A. Timbrell, In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett, 2006. 160(2): p. 171-7.
53. Gerlier, D. and N. Thomasset, Use of MTT colorimetric assay to measure cell activation. Journal of Immunological Methods, 1986. 94(1-2): p. 57-63.
54. van Meerloo, J., G.J. Kaspers, and J. Cloos, Cell sensitivity assays: the MTT assay. Methods Mol Biol, 2011. 731: p. 237-45.
55. Cole, S.P.C., Rapid chemosensitivity testing of human lung tumor cells using the MTT assay. Cancer Chemotherapy and Pharmacology, 1986. 17(3).
56. Geback, T., et al., TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques, 2009. 46(4): p. 265-74.
57. Lampugnani, M.G., Cell migration into a wounded area in vitro. Methods Mol Biol, 1999. 96: p. 177-82.
58. Kramer, N., et al., In vitro cell migration and invasion assays. Mutat Res, 2013. 752(1): p. 10-24.
59. Kam, Y., et al., A novel circular invasion assay mimics in vivo invasive behavior of cancer cell lines and distinguishes single-cell motility in vitro. BMC Cancer, 2008. 8: p. 198.
60. Uhlig, K., et al., Patterned Thermoresponsive Microgel Coatings for Noninvasive Processing of Adherent Cells. Biomacromolecules, 2016. 17(3): p. 1110-6.
61. Huang, R., et al., Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials, 2015. 53: p. 58-75.
62. Valster, A., et al., Cell migration and invasion assays. Methods, 2005. 37(2): p. 208-15.
63. Lawrence, B.D., Z. Pan, and M.I. Rosenblatt, Silk film topography directs collective epithelial cell migration. PLoS One, 2012. 7(11): p. e50190.
64. Poujade, M., et al., Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A, 2007. 104(41): p. 15988-93.
65. Scharenberg, C.W., The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood, 2002. 99(2): p. 507-512.
66. Durand, R.E. and P.L. Olive, Cytotoxicity, Mutagenicity and DNA damage by Hoechst 33342. Journal of Histochemistry & Cytochemistry, 1982. 30(2): p. 111-116.
67. Shapiro, H.M., Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry, 1981. 2(3): p. 143-50.
68. Belloc, F., et al., A flow cytometric method using Hoechst 33342 and propidium iodide for simultaneous cell cycle analysis and apoptosis determination in unfixed cells. Cytometry, 1994. 17(1): p. 59-65.
69. Olesiak-Banska, J., et al., Revealing spectral features in two-photon absorption spectrum of Hoechst 33342: a combined experimental and quantum-chemical study. J Phys Chem B, 2013. 117(40): p. 12013-9.
70. Lou, Z., et al., A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide. Chem Commun (Camb), 2013. 49(24): p. 2445-7.

無法下載圖示 全文公開日期 2021/08/25 (校內網路)
全文公開日期 2036/08/25 (校外網路)
全文公開日期 2036/08/25 (國家圖書館:臺灣博碩士論文系統)
QR CODE