簡易檢索 / 詳目顯示

研究生: 洪偉智
Chih-Wei Hung
論文名稱: 以混成式電漿化學氣相沉積系統製備類鑽碳薄膜及其應用之研究
Growth and Application of Diamond-like Carbon thin film by Hybrid Plasma Chemical Vapor Deposition System
指導教授: 柯文政
Wen-Cheng Ke
口試委員: 陳衛國
Wei-Kuo Chen
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 102
中文關鍵詞: 類鑽碳硬度
外文關鍵詞: Diamond-like carbon, Hardness
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究利用自組裝混成式化學氣相沉積系統(Hybrid Plasma CVD, HPCVD),於矽基板成長類鑽碳膜,並調整甲烷/氫氣比例流量、工作壓力、射頻電漿瓦數、氬氣流量等製程參數,製備高硬度類鑽碳膜。當甲烷/氫氣比例為6/94 sccm、工作壓力為2 torr、ECR/RF為625/250 W下成長30分鐘,利用奈米壓痕系統量測,得知薄膜硬度為10.7 GPa。研究中除了利用奈米壓痕系統量測薄膜硬度,同時利用Raman光譜分析類鑽碳膜內部之sp3及氫含量,利用兩個不同波長之雷射光Raman系統,量測類鑽碳膜之D-band與G-band,圖譜經高斯擬合分析後,計算得到G-band之分散率(Disp(G)),再將Disp(G)帶入由Ferrari提出之經驗公式計算得知薄膜內部sp3含量為64 %;利用Ferrari提出之另一項經驗公式,將DLC Raman圖譜在1050 cm-1及1800 cm-1間之連線斜率及G-band強度帶入分析,可得知薄膜內部氫含量約為43 %。研究中另外嘗試將類鑽碳膜作為矽基板之鈍化層,藉由少數載子生命週期判斷類鑽碳膜之鈍化效果優劣,當甲烷/氫氣比例為10/90 sccm、工作壓力為1 torr、ECR/RF為625/150 W下成長之類鑽碳膜厚度為100 nm時,類鑽碳膜之載子生命週期為 9.85 us。未來可進一步運用於矽基太陽能電池之鈍化層。


In this study, a home made hybrid chemical vapor deposition system (Hybrid Plasma CVD, HPCVD) was used to grow a diamond-like carbon film on silicon substrate, and prepare high hardness diamond-like carbon film by adjusting the methane/hydrogen ratio flow, working pressure, radio frequency power and argon flow rate, etc. The film hardness was 10.7 GPa measured by a nanoindentation apparatus, which prepared under 6/94 sccm methane/hydrogen flow rate, 2 torr working pressure, and 625/250 W ECR/RF power, and 30 minutes growth time. In the hardness analysis, not only the nanoindentation detection, the content of sp3 and hydrogen content in diamond-like carbon film is also related to the hardness of the diamond-like carbon film, which determined by Raman spectrum. In this study, we using two different wavelengths of the laser Raman system to measure G-band and D-band, which based on the empirical formula proposed by Ferrari in 2005. After Gaussian fitting G-peak by D-band and G-band, Disp(G) can be calculated using empirical formula. The dispersion rate of G is brought into the formula to figure out the internal sp3 content of the film is 64%, and the hydrogen content is obtained by the slope between the intensity of 1050 cm-1 and 1800 cm-1 peak in Raman spectroscopy. The hydrogen content of the film is about 43% after calculating the empirical formula with the slope. We attempt to use the diamond-like carbon film as the passivation layer on silicon substrate in another chapter of this study. The minority carrier lifetime is the key to determine the passivation effect of the diamond-like carbon film, and we try to increase the carrier lifetime of passivation layer by optimizing methane/hydrogen ratio flow and growth time. As our experimental results, the film with 100nm thickness has the highest carrier life cycle measured in quasi-steady state, 9.85 us, which is prepared under 10/90 sccm methane/hydrogen ratio, 1 Torr working pressure, and 625/150 W ECR/RF power.

中文摘要...........................................................................I 英文摘要..........................................................................II 致謝.............................................................................III 目錄.............................................................................IV 圖目錄..........................................................................VII 第一章 1-1前言............................................................................1 1-2類鑽碳膜發展製程及應用...........................................................1 1-3研究目的........................................................................3 第二章 文獻回顧...................................................................4 2-1類鑽碳薄膜......................................................................4 2-1-1非晶碳膜..................................................................4 2-1-2沉積類鑽碳膜方法...........................................................7 2-2電漿理論.......................................................................11 2-2-1電子迴旋共振化學氣相沉積法.................................................12 2-2-2 ECR電漿與RF電漿之混成電漿................................................13 2-3薄膜沉積.......................................................................17 2-3-1膜厚效應.................................................................19 2-3-2膜厚對膜應力之影響........................................................19 2-3-3膜厚對表面粗糙度影響......................................................20 2-3-4結構與膜應力之關係........................................................23 2-3-5沉積類鑽碳薄膜過程中加入氫氣效應...........................................25 2-3-6沉積類鑽碳薄膜過程中加入氬氣效應...........................................27 2-4鈍化層應用.....................................................................29 2-4-1矽晶表面鈍化效應..........................................................30 2-4-2表面複合速率對太陽能電池特性之影響.........................................31 第三章 實驗方法..................................................................32 3-1實驗流程.......................................................................32 3-2實驗步驟與方法.................................................................34 3-3拉曼光譜系統...................................................................36 3-4奈米壓痕原理...................................................................40 3-5 SEM原理.......................................................................42 3-6量測載子生命期之原理............................................................43 第四章 結果與討論................................................................46 4-1 甲烷/氫氣氣體比例對類鑽碳膜特性影響之研究........................................46 4-1-1甲烷/氫氣氣體比例對類鑽碳膜成長速率影響之研究...............................46 4-1-2甲烷/氫氣氣體比例對類鑽碳膜之sp3/氫含量及硬度之研究.........................49 4-2 成長壓力對類鑽碳膜特性影響之研究................................................54 4-2-1成長壓力對類鑽碳膜成長速率影響之研究.......................................55 4-2-2成長壓力對類鑽碳膜之sp3/氫含量及硬度研究...................................56 4-3 射頻電漿瓦數類鑽碳膜特性影響之研究..............................................63 4-3-1射頻電漿瓦數對類鑽碳膜成長速率影響之研究....................................63 4-3-2射頻電漿瓦數對類鑽碳膜sp3/氫含量及硬度研究..................................64 4-4氬氣流量對類鑽碳薄膜成長速率及硬度影響之研究......................................70 4-5 矽基板類鑽碳膜鈍化層之研究......................................................73 第五章 結論......................................................................82 第六章 文獻回顧..................................................................84

[1]Spitsyn, B. V., L. L. Bouilov, and B. V. Derjaguin. "Diamond and diamond-like films: deposition from the vapour phase, structure and properties." Progress in crystal growth and characterization17.2 (1988): 79-170.
[2] Tarrant, R. N., C. S. Montross, and D. R. McKenzie. "Combined deposition and implantation in the cathodic arc for thick film preparation." Surface and Coatings Technology 136.1-3 (2001): 188-191.
[3] Weiler, M., et al. "Formation of highly tetrahedral amorphous hydrogenated carbon, ta-C: H." Diamond and related materials4.4 (1995): 268-271.
[4] S.Weissmantal, G.Reise,H.J.Erler, F.Henny,K.Bewilogua, U.Ebersbach and C.Schurber, Thin Solid Films, Vol.63, p.315,1979.
[5] Holland, L., and S. M. Ojha. "Deposition of hard and insulating carbonaceous films on an rf target in a butane plasma." Thin Solid Films 38.2 (1976): L17-L19.
[6] Yoshizawa, Noriko, Yoshio Yamada, and Minoru Shiraishi. "Structure of amorphous hydrogenated carbon film prepared from rf plasma deposition." Carbon 31.7 (1993): 1049-1055.
[7] Andry, P. S., P. W. Pastel, and W. J. Varhue. "Comparison of diamond-like carbon film deposition by electron cyclotron resonance with benzene and methane." Journal of materials research 11.1 (1996): 221-228.
[8] 宋鍵民,鑽石合成,全華出版社,2000。
[9] Tsai, Hsiao‐chu, and D. B. Bogy. "Characterization of diamondlike carbon films and their application as overcoats on thin‐film media for magnetic recording." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5.6 (1987): 3287-3312.
[10] Matsumoto, Seiichiro, et al. "Vapor deposition of diamond particles from methane." Japanese Journal of Applied Physics21.4A (1982): L183.
[11] C.Weissmantal, F.Bewilogua, D.Dietrich, A.J.Erler, H.J.Hinnberg,
S.Klose, W.Nowick and G.Reisse., Libid, 72(1980)10.
[12] Grill, A., B. S. Meyerson, and V. V. Patel. "Diamondlike carbon films by rf plasma-assisted chemical vapor deposition from acetylene." IBM journal of research and development 34.6 (1990): 849-857.
[13] Malshe, A. P., et al. "Pulsed laser deposition of diamondlike hydrogenated amorphous carbon films." Journal of applied physics 68.11 (1990): 5648-5652.
[14] Kaplan, S., F. Jansen, and M. Machonkin. "Characterization of amorphous carbon‐hydrogen films by solid‐state nuclear magnetic resonance." Applied physics letters 47.7 (1985): 750-753.
[15] Thornton, John A. "Plasma-assisted deposition processes: theory, mechanisms and applications." Thin Solid Films 107.1 (1983): 3-19.
[16] Stephen J.Harris and Anita M.WeinerA “diamond-like carbon film For wear protection of steel”, Surface and Coatings Technology,Vol. 62, pp.550-557, 1993.
[17] Materials Science and Engineering: R: Reports Volume 37, Issues 4–6, 24 May 2002, Pages 129-281
[18] Tarvin, J. A., et al. "Mass-ablation rates in a spherical laser-produced plasma." Physical review letters 51.15 (1983): 1355.
[19] Robertson, John. "Diamond-like amorphous carbon." Materials science and engineering: R: Reports 37.4-6 (2002): 129-281.
[20] Alfred Grill, Bernard S. Meyerson, Synthetic Diamond:Emerging CVD Sciencec and Technology, 91-141 (1994)
[21] Nalwa, Hari Singh, ed. Nanostructured materials and nanotechnology. Gulf Professional Publishing, 2002.

[22] Asmussen, Jes. "Electron cyclotron resonance microwave discharges for etching and thin‐film deposition." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films7.3 (1989): 883-893.
[23] Kofoid, Melvin J., and Paul L. Zieske. "Method of producing high temperature, low pressure plasma." U.S. Patent No. 3,437,864. 8 Apr. 1969.
[24] 施漢章, Lecture-note of plasma processing, 2010.
[25] GRILL, Alfred. Cold plasma in materials fabrication. IEEE Press,
New York, 1994
[26] Fedosenko, G., et al. "Comparison of diamond-like carbon films synthesized by 2.45 GHz microwave and 13.56 MHz multi-jet radiofrequency plasma sources." Diamond and related materials10.3-7 (2001): 920-926.
[27] Quirk, Michael, and Julian Serda. Semiconductor manufacturing technology. Vol. 1. Upper Saddle River, NJ: Prentice Hall, 2001.
[28] 莊達人,VLSI製造技術,高立圖書有限公司,1996。
[29] Venables, J. A., and G. D. T. Spiller. "Nucleation and growth of thin films." Surface Mobilities on Solid Materials. Springer, Boston, MA, 1983. 341-404.
[30] Sung-Jin Cho, Jin-Won Chung, Kwang-Ryeol Lee, Characterization of the
mechanical properties of diamond-like carbon films, Diamond & Related
Materials 14 (2005) 1270-1276
[31] Ritwik kumar Roy, Sk. Faruque Ahmed, Jin Woo Yi, Myoung-Woon Moon,
Kwang-Ryeol Lee, Youngha Jun, Improvement of adhesion of DLC coating on
nitinol substrate by hybrid ion beam deposition technique, Vacuum 83 (2009)
1179-1183.
[32] M.C. Salvadori, D.R. Martins, M. Cattani, DLC coating roughness as a function of film thickness, Surface & Coating Technology 200 (2006) 5119-5122.
[33] S. Prawer, K.W.Nugent, Y.Lifshitz, G.D.Lempert, E.Grossman, J.Kulik, I.Avigal, R.Kalish, Systematic variation of the Raman spectra of DLC films as a function of sp2:sp3 composition, Diamond and Related Materials 5 (1996) 433-438.
[34] J. Robertson, Diamond-like amorphous carbon, Materials Science and Engineering R 37 (2002) 129-281.
[35] A.C. Ferrari, B. Kleinsorge, G. Adamopoulos, J. Robertson, W.I. Milne, V.
Stolojan, L.M. Brown, A. LiBassi, B.K. Tanner, Determination of bonding in amorphous carbons by electron energy loss spectroscpy, Raman scattering and X-ray reflectivity, Journal of Non-Crystalline Solid 266-269 (2000) 765-768.
[36] Craig A. Taylor, Mark F. Wayne, Wilson K. S. Chiu, Residual stress measurement in thin carbon films by Raman spectroscopy and nanoindentation, Thin Solid Films 429 (2003) 190-200.
[37] A. Grigonis, V. Sablinskas, M. Silinskas, D. Tribandis, The role of hydrogen in
a-C:H films deposited from hexanee or acetylene using direct ion beam deposition method, Vacuum 75 (2004) 261-267
[38] Masahito Ban, Takeshi Hasegawa, Sadao Fujii, Junzo Fujioka, Stress and
structural properties of diamond-like carbon films deposited by electron beam
excited plasma CVD, Diamond and Related Material 12 (2003) 47-56.
[39] A. Grigonis, V. Sablinskas, M. Silinskas, D. Tribandis, The role of hydrogen in
a-C:H films deposited from hexanee or acetylene using direct ion beam deposition method, Vacuum 75 (2004) 261-267.
[40] A, Grigonis, V. Sablinskas, M. Silinskas, D. Tribandis, The role of hydrogen in a-C:H films deposited from hexane or acetylene using direct ion beam deposition method, Vacuum 75 (2004) 261-267.
[41] G. Cicala, P. Bruno, A.M. Losacco, G. Mattei, “Plasma deposition of hydrogenated diamond-like carbon films from CH4-Ar mixtures”, Surface and Coatings Technology 180 –181 (2004) 222–226.
[42] Y.H. Liu, J. Li, D.P. Liu, T.C. Ma, G. Benstetter, “Properties and deposition processes of a-C: H films from CH4/Ar dielectric barrier discharge plasmas”, Surface & Coatings Technology 200 (2006) 5819–5822.
[43] K. Teii, “Structure changes in a-C:H films in inductive CH4/Ar plasma deposition”, Thin Solid Films 333 (1998) 103–107.

無法下載圖示 全文公開日期 2024/02/11 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE