簡易檢索 / 詳目顯示

研究生: 莊豐銘
Feng-Ming - Zhuang
論文名稱: 感應式功率傳送系統的控制及研製
Control and Implementation of an Inductive Power Transfer System
指導教授: 劉添華
Tian-Hua Liu
口試委員: 楊勝明
Sheng-Ming Yang
楊士進
Shih-Chin Yang
劉益華
Yi-Hua Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 零電壓切換串聯補償串聯諧振感應式功率傳送
外文關鍵詞: zero voltage switching, series resonant, series compensation, inductive power transfer
相關次數: 點閱:276下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文研製一套感應式功率傳送系統,由全橋串聯諧振轉換器作為前級,利用串聯諧振達到零電壓切換,減少切換損失,並補償線圈產生的虛功以提升輸出功率。後級採用降壓式轉換器,調整功率開關的責任週期改變輸出電壓,達到穩壓的目的。
    文中使用圓盤形的感應線圈,利用磁路模擬軟體,探討磁芯擺放的數量與位置,以期在經濟效益下提升能量傳送效率。為了改善功率傳送的能力,文中探討漏感產生虛功的補償方法。
    本文使用德州儀器公司TMS320F2808數位信號處理器做為控制核心,並採用混合式普斯卡特(hybrid posicast)控制法則,改善後級輸出電壓的動態響應。最後,實際研製一套輸入電壓為直流220V,輸出電壓為直流144V,輸出功率為1.8 仟瓦的感應式功率轉換器,驗證本文所提方法的正確性及可行性。實測結果說明,本文所研製的系統在一、二次側線圈距離為11 公分時,滿載轉換效率約可達到 87%。相關的結果,未來可適當改良後應用於電動機車的感應式充電。


    This thesis investigates the implementation of an inductive power transfer system. A full-bridge resonant converter is used as the front stage. By using a series resonant circuit, the zero voltage switching can be achieved to reduce the switching loss and also compensate the reactive power of the leakage inductance that can increase the output power. A buck converter is used as the back stage to adjust the duty cycle of power devices and then obtain output voltage regulation.
    A circular pad is used to install the inductive coils. By using a magnetic analysis simulation software, the number and position of the magnetic cores can be determined to improve the power transfer efficiency within a limited cost. To improve the capability of power transfer, the compensation of reactive power is discussed.
    A digital signal processor, TMS320F2808 is used as the control center to execute the hybrid Posicast control algorithm and improve the output voltage dynamic responses. Finally, an inductive power transfer system, which has input DC 220V, output DC 144V, rated 1.8kW has been implemented to evaluate the correctness and feasibility. Experimental results show that the full-load transfer efficiency can reach 87% when the distance between the primary coil and secondary coil is 11 cm. Experimental results show that the proposed method can be used for electric motorcycle charging system after suitable modification.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 XI 符號索引 XII 第一章 緒論 1 1.1 背景及動機 1 1.2 文獻回顧 2 1.3 論文大綱 4 第二章 感應線圈的模型分析 5 2.1 系統簡介 5 2.2 感應線圈簡介 5 2.3 等效模型分析 7 2.4 感應線圈的高頻效應分析 10 2.4.1 高頻時的集膚效應 10 2.4.2 高頻時的鄰近效應 12 2.5 感應線圈的磁路分析 13 2.5.1 感應線圈的有限元分析 13 2.5.2 磁芯數量的探討 14 2.4.2 磁芯放置位置的影響 17 第三章 感應式功率傳送 20 3.1 簡介 20 3.2 感應式功率傳送系統分析 21 3.3 補償電路的設計 22 3.3.1 二次側補償原理 23 3.3.2 二次側映射阻抗分析 27 3.3.3 一次側補償原理 29 3.3.4 品質因數 31 3.4 動作區間分析 32 第四章 感應式轉換系統架構 37 4.1 簡介 37 4.2 電路架構 37 4.3 電壓增益分析 38 4.3.1 不同品質因數下頻率對電壓增益的影響 41 4.3.2 品質因數對輸入相位的影響 42 4.3.3 不同耦合係數下頻率對電壓增益的影響 43 4.3.4 不同匝數比下頻率對電壓增益的影響 43 4.4 負載獨立電壓增益的諧振槽設計準則 45 4.5 降壓式轉換器設計準則 46 4.5.1 工作頻率選擇 46 4.5.2 考慮連續導通模式的電感設計 46 4.5.3 考慮變載的輸出電容設計 47 第五章 控制器設計 49 5.1 簡介 49 5.2 降壓式轉換器之動態模型 49 5.3 混合式普斯卡特控制器 54 5.3.1 半週期普斯卡特控制器 54 5.3.2 混合式普斯卡特控制 56 第六章 系統研製 59 6.1 簡介 59 6.2 硬體電路製作 61 6.2.1 功率級架構 61 6.2.2 閘極驅動電路 66 6.2.3 電壓偵測電路 67 6.2.4 過電流保護電路 68 6.2.5 電源電路 69 6.2.6 數位信號處理器 70 6.3 軟體與程式 72 6.3.1 主程式 72 6.3.2 中斷程式 72 第七章 模擬與實測 75 7.1 簡介 75 7.2 模擬與實測結果 75 第八章 結論與建議 91 參考文獻 92

    [1] H. H. Wu, A. Gilchrist, K. Sealy, P. Israelsen, J. Muhs, "A review on inductive charging for electric vehicles," 2011 IEEE IEMDC, pp. 143 - 147, 2011.
    [2] M. Yilmaz, P. T. Krein, "Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles," IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2151 - 2169, May. 2013.
    [3] G. A. Covic, J. T. Boys, "Inductive power transfer," Proceedings of the IEEE, vol. 101, no.6, pp. 1276 - 1289, June. 2013.
    [4] G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, J. T. Boys, "The design of a contact-less energy transfer system for a people mover system," 2000 IEEE ICPST, pp. 79 - 84, 2000.
    [5] J. Dai, D. C. Ludois, “A Survey of Wireless Power Transfer and a Critical Comparison of Inductive and Capacitive Coupling for Small Gap Applications,” IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6017 – 6029, Nov. 2015.
    [6] N. H. Kutkut, D. M. Divan, D. W. Novotny, R. H. Marion, "Design considerations and topology selection for a 120-kW IGBT converter for EV fast charging," IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 169 - 178, Jan. 1998.
    [7] C. Zheng, J. S. Lai, R. Chen, W. E. Faraci, Z. U. Zahid, B. Gu, L. Zhang, G. Lisi, D. Anderson, "High-efficiency contactless power transfer system for electric vehicle battery charging application," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1 pp. 65 - 74, Mar. 2015.
    [8] H. Tanabe, T. Kojima, A. Imakiire, K. Fuji, M. Kozako, M. Hikita, "Comparison performance of Si-IGBT and SiC-MOSFET used for high efficiency inverter of contactless power transfer system," 2015 IEEE PEDS, pp. 707 - 710, 2015.
    [9] J. Choi, D. Tsukiyama, Y. Tsuruda, J. Rivas, "13.56 MHz 1.3 kW resonant converter with GaN FET for wireless power transfer," 2015 IEEE WPTC, pp. 1 - 4, 2015.
    [10] Z. Huang, S. C. Wong, C. K. Tse, "Design methodology of a seriesseries inductive power transfer system for electric vehicle battery charger application," 2014 IEEE ECCE, pp. 1778 - 1782, 2014.
    [11] C. S. Wang, O. H. Stielau, G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," IEEE Transactions on Industrial Electronics, vol. 52, no. 5, pp. 1308 - 1314, Oct. 2005.
    [12] L. Zhao, D. J. Thrimawithana, U. K. Madawala, "A hybrid bidirectional IPT system with improved spatial tolerance," 2015 IEEE IFEEC, pp. 1 - 6, 2015.
    [13] W. X. Zhong, C. Zhang, X. Liu, S. Y. R. Hui, "A methodology for making a three-coil wireless power transfer system more energy efficient than a two-coil counterpart for extended transfer distance," IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 933 - 942, Feb. 2015.
    [14] M. Budhia, J. T. Boys, G. A. Covic, C. Y. Huang, "Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems, IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318 - 328, Jan. 2013.
    [15] A. Zaheer, H. Hao, G. A. Covic, D. Kacprzak, "Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging," IEEE Transactions on Power Electronics, vol. 30, no. 4, pp.1937 - 1955, Apr. 2015.
    [16] M. Budhia, G. A. Covic, J. T. Boys, "Design and optimization of circular magnetic structures for lumped inductive power transfer systems," IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096 - 3108, Nov. 2011.
    [17] M. J. Neath, A. K. Swain, U. K. Madawala, D. J. Thrimawithana, "An optimal PID controller for a bidirectional inductive power transfer system using multiobjective genetic algorithm," IEEE Transactions on Power Electronics, vol. 29, no. 3, pp. 1523 - 1531, Mar. 2014.
    [18] U. K. Madawala, D. J. Thrimawithana, "New technique for inductive power transfer using a single controller," IET Power Electronics, vol. 5, no. 2, pp. 248 - 256, Feb. 2012.
    [19] F. F. A. V. D. Pijl, M. Castilla, P. Bauer, "Adaptive sliding-mode control for a multiple-user inductive power transfer system without need for communication," IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 271 - 279, Jan. 2013.
    [20] J. Y. Lee, B. M. Han, "A bidirectional wireless power transfer EV charger using self-resonant PWM," IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 1784 - 1787, Apr. 2015.
    [21] 呂文隆、張簡士琨、曾國境,交換式電源設計,全華圖書。
    [22] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, B. H. Cho, "Design of a contactless battery charger for cellular phone," IEEE Transactions on Industrial Electronics, vol. 48, no. 6, pp. 1238 – 1247, Dec. 2001.
    [23] R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, N. Buchheit, "A multi-resonant converter for non-contact charging with electromagnetic coupling," IECON 97, vol. 2, pp. 792 - 797, 1997.
    [24] F. Nakao, Y. Matsuo, M. Kitaoka, H. Sakamoto, "Ferrite core couplers for inductive chargers," PCC-Osaka 2002, vol. 2, pp. 850- 854, 2002.
    [25] EPARC,電力電子學綜論,全華圖書。
    [26] 劉濱達、陳在泩,電路學,東華。
    [27] 江炫樟,電力電子學,全華圖書。
    [28] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd edition, Norwell, MA: Kluwer, 2001.
    [29] 王俊傑,非接觸式電能轉換器之研製,國立台灣科技大學,碩 士論文 2015。
    [30] W. Zhang, S. C. Wong, C. K. Tse, Q. Chen, "Design for efficiency optimization and voltage controllability of series–series compensated inductive power transfer systems," IEEE Transactions on Power Electronics, vol. 29, no. 1, pp. 191 - 200, Jan. 2014.
    [31] C. S. Wang, G. A. Covic, O. H. Stielau, "Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems," IEEE Transactions on Industrial Electronics, vol. 51, no. 1, pp. 148 - 157, Feb. 2004.
    [32] J. Y. Hung, "Feedback control with Posicast," IEEE Transactions on Industrial Electronics, vol. 50, no. 1, pp. 94 - 99, Feb. 2003.
    [33] 何明字、楊松霈、陳信助,自動控制系統,高立圖書。
    [34] Texas Instruments, TMS320x280x, 2801x, 2804x DSP Analog-to- Digital Converter (ADC) Reference Guide, 2010.
    [35] Texas Instruments, TMS320x280x, 2801x, 2804x DSP System Control and Interrupts Reference Guide, 2012.

    無法下載圖示 全文公開日期 2022/02/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE