簡易檢索 / 詳目顯示

研究生: 涂正誼
JHANG-YI TWU
論文名稱: 低輸入電流漣波之不對稱半橋返馳式電能轉換器
Low Input Current Ripple Asymmetrical Half Bridge Flyback Converter
指導教授: 呂錦山
Ching-Shan Leu
口試委員: 林瑞禮
Ray-Lee Lin
邱煌仁
Huang-Jen Chiu
榮世良
Brady Jung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 66
中文關鍵詞: 不對稱半橋返馳式轉換器輸入電流漣波消減零電壓切換零電流切換
外文關鍵詞: asymmetrical half bridge flyback, the K factor.
相關次數: 點閱:275下載:36
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不對稱半橋返馳式轉換器具有次級側結構簡單、開關元件電壓應力低的優點,並適合用於高頻率、高輸入電壓的電能轉換應用場合。此電路架構可以透過使用軟開關技術;例如一次側功率開關的零電壓切換和二次側整流二極體的零電流切換(ZCS)來實現轉換器整體效率的提升。然而,在此轉換器的架構下,其輸入電流具有脈動且不連續的特性,此特性會產生電磁干擾雜訊。為了使輸入電流成為非脈動的形式並進一步降低其漣波成分,本論文提出一低輸入電流漣波之不對稱半橋返馳式電能轉換器。
    低輸入電流漣波之不對稱半橋返馳式轉換器不僅承襲了不對稱半橋返馳式轉換器的優點;透過其內置的電流漣波消除機制,可進一步有效地降低輸入電流漣波。
    文中將會探討不對稱半橋返馳式轉換器及低輸入電流漣波之不對稱半橋返馳式轉換器的電路工作原理及電路元件設計。最後透過規格為:輸入直流電壓300至400伏特、輸出直流電壓及電流 24伏特/10安培、輸出功率240瓦特及電路工作頻率100千赫兹的實體電路之實驗結果來驗證上述兩個轉換器之特性及理論 。


    Asymmetrical half-bridge flyback converter (AHB-flyback) is attractive because of its simplicity of secondary side configuration, and low voltage stress. It can achieve high efficiency by using soft switching techniques, such as the zero-voltage switching (ZVS) of primary power switches and the zero-current switching (ZCS) of output rectifiers. These characteristics make it suitable for high frequency and high input voltage power conversion applications. However, this converter has pulsating input current resulting in generating high di/dt noise. To reduce the pulsating input current ripple, an Input Current Ripple Reduction Asymmetrical Half Bridge flyback converter (RR-AHB-flyback) is proposed in this thesis.
    In addition to inheriting the advantages of AHB-flyback converter, RR-AHB-flyback has significantly reduces input current ripple due to its built-in current ripple cancellation mechanism. Furthermore, the coupled inductor is used to achieve high power density and wide ZVS range.
    Operation principles and circuit design are shown in this thesis. Both of AHB-flyback and RR-AHB-flyback are experimented under 100 kHz, 300-400 V input and 24V/10A output to demonstrate its feasibility.

    Abstract I Acknowledgements II Table of Contents III List of Figures V List of Tables VIII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Objectives of the Thesis 5 1.3 Organization of the Thesis 6 Chapter 2 AHB-flyback with wind range ZVS operation 7 2.1 Introduction 7 2.2 Operational Principle 8 2.3 Circuit Analysis 13 2.3.1 Voltage gain and DC value of blocking capacitor 13 2.3.2 DC value of magnetizing current 14 2.3.3 Maximum and Minimum value of magnetizing current 14 2.3.4 Maximum and Minimum value of resonant current 15 2.3.5 Reverse voltage of output rectifier 16 2.3.6 ZCS and non-ZCS operation conditions 16 2.4 Circuit Design 18 2.4.1 Transformer Design 18 2.4.2 Magnetizing inductor design 20 2.4.3 Resonant inductor design 21 2.4.4 Blocking capacitor design 22 2.5 Experimental Results 23 2.6 Summary 31 Chapter 3 Input Current Ripple Reduction with LLC-TVD 33 3.1 Introduction 33 3.2 Operational Principle 34 3.3 Circuit Analysis 39 3.3.1 DC values of resonant capacitor Cr1 and Cr2 39 3.3.2 Voltage gain 40 3.3.3 DC value of magnetizing current 40 3.3.4 Maximum and Minimum value of magnetizing current 41 3.3.5 Maximum and Minimum value of resonant current 41 3.3.6 Reverse voltage of output rectifier 42 3.3.7 Input current cancellation 42 3.3.8 Resonant inductor current ILr1 and ILr2 43 3.4 Circuit Design 43 3.4.1 Magnetizing inductor 44 3.4.2 Resonant inductor 44 3.4.3 Blocking capacitor 45 3.4.4 Compensator design 45 3.5 Experimental Results 49 3.6 Summary 58 Chapter 4 Conclusions and Future Research 60 4.1 Conclusions 60 4.2 Future Researches 61 References 62

    [1] S. A. Liang, “Low cost and high efficiency PC power supply design to meet 80 plus requirement” Industrial Technology, 2008. ICIT 2008. IEEE International Conference, 21-24 April 2008 Page(s):1-6.
    [2] C. Calwell and P. Ostendorp, “80 plus: A strategy for reducing the inherent environmental impacts of computers,” in Proc. IEEE Int. Symp. Electon. Environ. 2005, pp. 151–156.
    [3] 80 PLUS program [Online]. Available: http://www.80plus.org.htm
    [4] C. P. Henze, H. C. Manin, D. W. Pmley, “Zero-voltage-switching in high-frequency power converters using pulse width modulation”, Proc. IEEE Applied Power Electronics Conf., pp.33-40, 1988.
    [5] K. H. Liu and F. C. Lee, “Zero-voltage switching technique in DC/DC converters,” IEEE Trans. Power Electron., vol. 5, no. 3, pp. 293-304, Jul. 1990.
    [6] G. Hua and F. C. Lee, “Soft-switching techniques in PWM converters,” IEEE Trans. Ind. Electron., vol. 42, no. 6, pp. 595–603, Dec. 1995.
    [7] S. Birca-Galateanu, “Flyback Converter Output Voltage Stabilization”, IEEE Trans. On Aerospace and Electronic Systems, vol. AES-23, issue 2, pp. 146-151, March 1987.
    [8] N. R. M. Rao, N. V. Philips, “A Unifying Principle Behind Switching Converters and some new basic Configurations,” IEEE Trans. on Consumer Electron., vol. 26, no. 1, pp. 142-148, Feb. 1980.
    [9] R. Prieto, J. A. Cobos, O. Garcia, R. Asensi, and J. Uceda, “Optimizing the winding strategy of the transformer in a flyback converter,” in Proc. IEEE PESC, 1996, pp. 1456–1462.
    [10] A. Hren, J. Korelic, and M. Milanovic, “RC-RCD clamp circuit for ringing losses reduction in a flyback converter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 5, pp. 369–373, May 2006.
    [11] K. Harada and T. Ninomiya, “Optimum design of RC snubbers for switching regulators,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-15, no. 2, pp. 209–218, Mar. 1979.
    [12] W. McMurray, “Selection of snubbers and clamps to optimize the design of transistor switching converters,” Industry Applications, IEEE Transactions on, vol. IA-16, pp. 513 –523, July 1980.
    [13] W. McMurray, “Optimum Snubbers for Power Semiconductors,” IEEE IAS 1971 Annual Meeting
    [14] P. Meng, X. Wu, J. Yang, H. Chen, and Z. Qian, “Analysis and design considerations for EMI and losses of RCD snubber in flyback converter,” in Proc. Appl. Power Electron. Conf. Expo., 2010, pp. 642–647.
    [15] K. Harada and H. Sakamoto, “Switched snubber for high frequency switching,” in Proc. IEEE Power Electron. Spec. Conf., 1990, pp. 181–188.
    [16] Patel, H.K., “Voltage transient spikes suppression in flyback converter using dissipative voltage snubbers,” in Proc. IEEE ICIEA 2008, pp. 897-901.
    [17] C. M. Wang, C. H. Su, and C. H. Yang, “ZVS-PWM flyback converter with a simple auxiliary circuit,” IEEE Trans. Power Electron, vol. 153, no. 1, pp. 116–122, Jan. 2006.
    [18] Henry Chung, S.Y.R. Hui, W.H. Wang, “An Isolated Fully Soft-Switched Flyback Converter with Low Voltage Stress,” 28th Annual IEEE Power Electronics Specialists Conference on PESC, (1997)1417-1423.
    [19] P. Rong, W. Chen, and Z. Lu, “A novel active clamped dual switch flyback converter” in IEEE 2009 Power Electronics and Motion Control Conference, 2009, pp. 1277-1281.
    [20] D. Skendzic, “Two transistor flyback converter design for EMI control”, IEEE Symposium on Electromagnetic Compatibility Washington DC, pp.130-133, 21-23 August 1990.
    [21] Xiucheng Huang. “A high efficiency Flyback converter with new active clamp technique”, 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC),02/2010.
    [22] D. M. Bellur, M. K. Kazimierczuk, “Two-switch flyback PWM DC–DC converter in discontinuous-conduction mode”, Int. J. Circuit Theory Appl., 2010 DOI: 10.1002/cta672, currently in press.
    [23] D. M. Bellur, M. K. Kazimierczuk, “Two-switch flyback PWM DC–DC converter in continuous-conduction mode”, Int. J. Circuit Theory Appl., 2010, DOI: 10.1002/cta690, currently in press.
    [24] R. Watson, F. C. Lee, and G. C. Hua, "Utilization of an active-clamp circuit to achieve soft switching in flyback converters," IEEE Trans. Power Electron., vol. 11, no. 1, pp. 162-169, Jan. 1996.
    [25] T. M. Chen and C. L. Chen, “Analysis and design of asymmetrical half bridge flyback converter,” in Proc. Inst. Elect. Eng.—Elect. Power Appl., Nov. 2002, vol. 1, pp. 433–440.
    [26] T. M. Chen and C. L. Chen, “Characterization of asymmetrical half bridge flyback converter,” in Proc. IEEE Power Electron. Spec. Conf., 2002, pp. 921–926.
    [27] J. H. Jung and J. G. Kwon, “Soft switching and optimal resonance conditions of APWM HB flyback converter for high efficiency under high output current,” in Proc. PESC, 2008, pp. 2994–3000.
    [28] H. Li, W. J. Zhou, S. P. Zhou, and X. Yi, “Analysis and design of high frequency asymmetrical half bridge flyback converter,” in Proc. IEEE Int. Conf. Electron. Mach. Syst., 2008, pp. 1902–1904.
    [29] Bor-Ren lin, Huann-Keng Chiang, Chao-Hsien Tseng, and Kao-Cheng Chen, “Analysis and Implementation of an asymmetrical half-bridge converter,” in Proc. Int. Conf. Power Electron. Drives Syst., 2005, pp. 407–412.
    [30] X. Y. Xu, A. M. Khambadkone, and R. Oruganti, “An asymmetrical half bridge flyback converter with zero-voltage and zero-current switching,” in Proc. Ind. Electron. Soc., 2004, pp. 767–772.
    [31] L. M. Wu and C. Y. Pong, “A half bridge flyback converter with ZVS and ZCS operations,” in 7th Int. Conf. ICPE, Oct. 22–26, 2007, pp. 876–882.
    [32] F. Sichirollo, S. Buso, G. Spiazzi, “Analysis and Optimization of the AHB-Flyback Topology for Solid State Lighting Applications”, IECON 2011- 37th Annual Conference on IEEE Industrial Electronics Society, pp.2895-2900, 7-10 Nov. 2011.
    [33] G. Y. Jeong, “High efficiency asymmetrical half-bridge flyback converter using a new voltage-driven synchronous rectifier,” Proc. IET Power Electron., vol. 3, no. 1, pp. 18-32, 2010.
    [34] Junseok Cho, Joonggi Kwon and Sangyoung Han, "Asymmetrical ZVS PWM flyback converter with synchronous rectification for ink-jet printer," in Proc. IEEE PESC Conf., 2006, pp. I-7.
    [35] Z. Lu, H. Chen, Z. Qian, “An Improved Topology of Boost Converter with Ripple Free Input Current”, IEEE Conf. APEC 2000, pp. 528-532.
    [36] Fukushima K., Norigoe I., Ninomiya T., Shoyama M., Harada Y., Tsukakoshi K., “Input current-ripple reduction of a pulse-link DC-AC converter for fuel cells”, INTELEC 2008. IEEE 30th International Telecommunications Energy Conference, 2008.
    [37] J. M. Kwon, E. H. Kim, B. H. Kwon and K.H. Nam, “High efficiency fuel cell power conditioning system with input current ripple reduction” , IEEE Trans. Ind. Electron., vol. 56, no. 3, pp. 826–834, Mar. 2009.
    [38] C. S. Leu and Q. T. Nha, “A half-bridge converter with input current ripple reduction for DC distribution systems,” IEEE Trans. Power Electronics, vol. 28, no. 4, pp. 1756–1763, Apr. 2013.
    [39] TDK’s European Website for Electronic Components & Systems [Online]. Available: http://www.tdk.co.jp/tefe02/e141.pdf
    [40] C. P. Basso, Switch-mode power supplies, New York: McGraw-Hill, 2008.
    [41] H. D. Venable, “The K Factor: A New Mathematical Tool for Stability Analysis and Synthesis.” Proc. Powercon 10. 1983. San Diego, CA. pp. H1−1 to H1−12.

    QR CODE