簡易檢索 / 詳目顯示

研究生: 维拉
Veeramanikandan Rajagopal
論文名稱: 綜合研究儲氫性能的研究和催化機制AZ-鎂合金多種加工方式和納米級添加劑
A Comprehensive Study of Hydrogen Storage Properties and Catalytic Mechanisms of AZ-Magnesium Alloys with Various Processing Methods and Nanoscale Additives
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
Chun Chiu
林景崎
Jing-Chie Lin
汪俊延
Jun- Yen Uan
李天錫
Tien-Hsi Lee
曾有志
Yu Chih Tzeng
王丞浩
Chen-Hao Wang
桑吉塔
Sangeetha Thangavel
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 116
中文關鍵詞: 氫化動力學PC-等溫線AZ-鎂合金ECAP, HEBM催化機理WS2-納米管/Pd
外文關鍵詞: Hydrogenation kinetics, PC-isotherm, AZ-magnesium alloy, ECAP, HEBM, WS2-nanotubes/Pd, catalytic mechanism
相關次數: 點閱:285下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不斷擴大的全球能源危機除了氫之外基本上沒有有效的治療方法。 對於改變依賴化石燃料的經濟來說,一種特別有吸引力的替代能源是氫。
    在這項研究工作中,研究了具有精細調整微觀結構的商用鎂合金AZ31-Mg合金和AZ91-Mg合金的儲氫性能。 使用不同的加工方法,包括等通道角擠壓 (ECAP) 和高能球磨 (HEBM),對合金的微觀結構和相組成進行細化。 使用 X 射線衍射 (XRD)、掃描電子顯微鏡 (SEM) 和光學數字顯微鏡 (ODM) 對氫吸收和解吸過程中發生的微觀結構和相變進行了表徵。 在300°C和375°C的溫度下,使用Sieverts型裝置測量所製備的合金的氫化計算。 ECAP 和 HEBM 工藝均顯著改善了加工合金的氫化性能。 經處理的合金中不存在壓力滯後。 結果表明,粉末形貌和塊體樣品的微觀結構均顯著影響AZ鎂合金的吸放氫性能。
    在接下來的步驟中,我們採用化學氣相沉積(CVD)技術合成了WS2無機納米管,並通過實驗研究了AZ31-WS2納米管和Pd(AZ31-WS2 NTs/Pd)複合材料的活化和儲氫動力學。 。 採用機械球磨製備了三種不同類型的AZ31-WS2 NTs/Pd複合材料,並使用透射電子顯微鏡(TEM)表徵了形貌和納米管結構。 採用差示掃描量熱法(DSC)分析熱分解性能。 WS2NTs/Pd催化劑的加入大大增強了脫氫特性,催化機理分析將為無機納米管和過渡金屬在儲氫材料開發中的應用提供指導


    The expanding global energy crisis essentially has no effective treatment other than hydrogen. A particularly attractive alternative energy source for shifting an economy dependent on fossil fuels is hydrogen.
    In this research work, the hydrogen storage properties of commercial magnesium alloys with a finely tuned microstructure, AZ31-Mg alloy, and AZ91-Mg alloy, are investigated. The microstructure and phase composition of the alloys were refined using varying processing methods, including equal channel angular pressing (ECAP) and high energy ball milling (HEBM). The microstructure and phase changes that occurred throughout the hydrogen absorption and desorption processes were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical digital microscopy (ODM). At a temperature of 300°C and 375°C, the Sieverts' type apparatus is used to measure the hydrogenation calculations of prepared alloys. Both the ECAP and HEBM processes significantly improved the hydrogenation properties of processed alloys. No pressure hysteresis was present in the treated alloys. It was demonstrated that the morphologies of powders and the microstructure of bulk samples both significantly influence the hydrogen absorption and desorption properties of AZ magnesium alloys.
    In the steps that followed, we synthesised WS2 inorganic nanotubes using the chemical vapour deposition (CVD) technique, and we experimentally investigated the activation and hydrogen storage kinetics of the composite made of AZ31-WS2 nanotubes and Pd (AZ31-WS2 NTs/Pd). Mechanical ball milling was used to prepare three different types of AZ31-WS2 NTs/Pd composites, and transmission electron microscopy (TEM) was used to characterise the morphologies and nanotube structures. Differential scanning calorimetry (DSC) was used to analyse the thermal decomposing properties. The dehydrogenation characteristics were greatly enhanced by the inclusion of WS2NTs/Pd catalysts, and the catalytic mechanism analysis would provide guidance for the use of inorganic nanotubes and transition metals in the development of hydrogen storage materials

    Acknowledgement……………………………………………………………………………i Abstract………………………………………………………………………………………..ii Table of content……………………………………………………………………………….iv List of figures…………………………………………………………………………...…….ix List of tables……………………………………………………………………………...…..xii CHAPTER 1: Introduction 1 1.1. Motivation 1 1.2. Pollution and Global warming. 2 1.3. Energy Crisis. 3 1.4. Hydrogen Economy 4 1.5. Hydrogen storage Methods 5 1.5.1. Compressed- gas storage. 5 1.5.2. Cryogenic hydrogen storage. 6 1.5.3. Metal hydride – solid state hydrogen storage method. 8 1.6. Research layout. 11 CHAPTER 2: Background 12 2.1. Metal hydrides 12 2.1.1. Intermetallic hydrides 13 2.1.2. Complex metal hydrides 13 2.1.3. Elemental metal hydrides 14 2.2. Light weight elemental metal hydride system Mg- H2 14 2.2.1. Magnesium based alloy system. 14 2.2.2. Mg-Al alloy system. 15 2.2.3. Magnesium- hydrogen reaction mechanism. 16 2.3. Effect of equal channel angular pressing (ECAP) in Magnesium based alloys. 19 2.4. Effect of high energy ball milling (HEBM) in Magnesium based alloys. 20 2.5. Effect of transition metal dichalcogenides in Magnesium based alloys. 21 2.6. Effect of transition metal in Magnesium based alloys. 22 CHAPTER 3: Experimental procedures and principles. 24 3.1. Stir casting process. 24 3.2. Heat treatment process 26 3.3. Plastic deformation process. 27 3.3.1. Equal- channel angular pressing (ECAP) 29 3.4. High energy ball milling process- Mechanical milling. 31 3.4.1. Important parameters of ball milling 32 3.4.2. Hydrogenation mechanisms in ball milled powders. 33 3.5. Chemical vapor deposition. 33 3.6. Kinetic and PCT calculation Sievert type apparatus. 35 3.6.1. Volumetric calculation. 35 3.6.2. Pressure – composition – Isotherm (PCI) 36 3.6.3. Activation energy Calculation. 37 3.7. Research Objectives 40 CHAPTER 4: Effect of Different processing methods on the micro structures and hydrogen storage properties of Different AZ magnesium alloy. 41 4.1. Introduction 41 4.2. Experimental procedure 44 4.2.1. Magnesium alloy preparations 44 4.2.2. Materials Characterization 45 4.2.3. Hydrogenation measurements 45 4.3. Result and Discussion 46 4.3.1. Micro structure analysis 46 4.3.2. SEM-EDS analysis 47 4.4. Hydrogen storage properties. 50 4.4.1. Hydrogenation absorption and desorption properties. 50 4.4.2. Pressure composition isotherm analysis. 54 4.5. Summary 57 CHAPTER 5: The hydrogen storage properties and catalytic mechanism of the AZ31-WS2 Nanotube /pd composite 59 5.1. Introduction 59 5.2. Experimental procedures 61 5.2.1. Synthesis of WS2 nanotube catalyst. 61 5.2.2. Synthesis of AZ31- WS2 NTs /Pd composite. 62 5.2.3. Characterization and hydrogenation. 62 5.3. Results and discussions 64 5.3.1. Microstructures of WS2-NTs. 64 5.3.2. Morphology analysis of AZ31- WS2 NTs composite powders. 65 5.3.3. Hydrogen storage properties of as- prepared AZ31-WS2 NTs /Pd composites. 67 5.3.4. XRD -Phase analysis of AZ31-WS2 NTs /Pd composite 70 5.3.5. Activation energy calculations 71 5.4. Summary 74 5.5. Processing and additives effects on AZ magnesium alloys 74 CHAPTER 6: Conclusions 78 List of publications………………………………………………………………...…………76 References……………………………………………………………………………………78

    [1] J.O.M. Bockris, Will lack of energy lead to the demise of high-technology countries in this century?, Int J Hydrogen Energy. 32 (2007) 153–158. https://doi.org/10.1016/j.ijhydene.2006.08.025.
    [2] C. Liu, F. Li, M. Lai-Peng, H.M. Cheng, Advanced materials for energy storage, Advanced Materials. 22 (2010). https://doi.org/10.1002/adma.200903328.
    [3] S.C. Peter, Reduction of CO2 to Chemicals and Fuels: A Solution to Global Warming and Energy Crisis, ACS Energy Lett. 3 (2018) 1557–1561. https://doi.org/10.1021/acsenergylett.8b00878.
    [4] S.E. Hosseini, M.A. Wahid, Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development, Renewable and Sustainable Energy Reviews. 57 (2016) 850–866. https://doi.org/10.1016/j.rser.2015.12.112.
    [5] L.A. Arias, E. Rivas, F. Santamaria, V. Hernandez, A review and analysis of trends related to demand response, Energies (Basel). 11 (2018). https://doi.org/10.3390/en11071617.
    [6] J. Zhao, K. Dong, X. Dong, M. Shahbaz, How renewable energy alleviate energy poverty? A global analysis, Renew Energy. 186 (2022) 299–311. https://doi.org/10.1016/j.renene.2022.01.005.
    [7] B.C.R. Ewan, R.W.K. Allen, A figure of merit assessment of the routes to hydrogen, Int J Hydrogen Energy. 30 (2005) 809–819. https://doi.org/10.1016/j.ijhydene.2005.02.003.
    [8] A. Züttel, Hydrogen storage methods, Naturwissenschaften. 91 (2004) 157–172. https://doi.org/10.1007/s00114-004-0516-x.
    [9] Y. Wei, F. Gao, J. Du, The Electrochemical Society Interface FEATURED ARTICLES Hydrogen Storage and Its Limitations You may also like Hydrogen storage on Li-decorated B 4 N: a first-principle calculation insight, n.d.
    [10] R. Krishna, E. Titus, M. Salimian, O. Okhay, S. Rajendran, A. Rajkumar, J.M. G. Sousa, A.L. C. Ferreira, J. Campos, J. Gracio, Hydrogen Storage for Energy Application, in: Hydrogen Storage, InTech, 2012. https://doi.org/10.5772/51238.
    [11] A.B. Lovins, Profitable solutions to climate, oil, and proliferation, Ambio. 39 (2010) 236–248. https://doi.org/10.1007/s13280-010-0031-6.
    [12] Y. Sun, C. Shen, Q. Lai, W. Liu, D.W. Wang, K.F. Aguey-Zinsou, Tailoring magnesium based materials for hydrogen storage through synthesis: Current state of the art, Energy Storage Mater. 10 (2018) 168–198. https://doi.org/10.1016/j.ensm.2017.01.010.
    [13] J. Andersson, S. Grönkvist, Large-scale storage of hydrogen, Int J Hydrogen Energy. 44 (2019) 11901–11919. https://doi.org/10.1016/j.ijhydene.2019.03.063.
    [14] A. Lys, J.O. Fadonougbo, M. Faisal, J.-Y. Suh, Y.-S. Lee, J.-H. Shim, J. Park, Y.W. Cho, Enhancing the Hydrogen Storage Properties of AxBy Intermetallic Compounds by Partial Substitution: A Short Review, Hydrogen. 1 (2020) 38–63. https://doi.org/10.3390/hydrogen1010004.
    [15] G. Sandrock, A panoramic overview of hydrogen storage alloys from a gas reaction point of view, 1999.
    [16] U. Eberle, M. Felderhoff, F. Schüth, Chemical and physical solutions for hydrogen storage, Angewandte Chemie - International Edition. 48 (2009) 6608–6630. https://doi.org/10.1002/anie.200806293.
    [17] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, Int J Hydrogen Energy. 32 (2007) 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022.
    [18] J. Bellosta von Colbe, J.R. Ares, J. Barale, M. Baricco, C. Buckley, G. Capurso, N. Gallandat, D.M. Grant, M.N. Guzik, I. Jacob, E.H. Jensen, T. Jensen, J. Jepsen, T. Klassen, M. V. Lototskyy, K. Manickam, A. Montone, J. Puszkiel, S. Sartori, D.A. Sheppard, A. Stuart, G. Walker, C.J. Webb, H. Yang, V. Yartys, A. Züttel, M. Dornheim, Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives, Int J Hydrogen Energy. 44 (2019) 7780–7808. https://doi.org/10.1016/j.ijhydene.2019.01.104.
    [19] D. Wenger, W. Polifke, E. Schmidt-Ihn, T. Abdel-Baset, S. Maus, Comments on solid state hydrogen storage systems design for fuel cell vehicles, Int J Hydrogen Energy. 34 (2009) 6265–6270. https://doi.org/10.1016/j.ijhydene.2009.05.072.
    [20] C. Pohlmann, L. Röntzsch, F. Heubner, T. Weißgärber, B. Kieback, Solid-state hydrogen storage in Hydralloy-graphite composites, J Power Sources. 231 (2013) 97–105. https://doi.org/10.1016/j.jpowsour.2012.12.044.
    [21] S.I. Orimo, Y. Nakamori, J.R. Eliseo, A. Züttel, C.M. Jensen, Complex hydrides for hydrogen storage, Chem Rev. 107 (2007) 4111–4132. https://doi.org/10.1021/cr0501846.
    [22] K.T. Møller, D. Sheppard, D.B. Ravnsbæk, C.E. Buckley, E. Akiba, H.W. Li, T.R. Jensen, Complex metal hydrides for hydrogen, thermal and electrochemical energy storage, Energies (Basel). 10 (2017). https://doi.org/10.3390/en10101645.
    [23] N.A.A. Rusman, M. Dahari, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int J Hydrogen Energy. 41 (2016) 12108–12126. https://doi.org/10.1016/j.ijhydene.2016.05.244.
    [24] Y. Wang, S. Lü, Z. Zhou, W. Zhou, J. Guo, Z. Lan, Effect of transition metal on the hydrogen storage properties of Mg–Al alloy, J Mater Sci. 52 (2017) 2392–2399. https://doi.org/10.1007/s10853-016-0533-0.
    [25] A.K. Dahle, Y.C. Lee, M.D. Nave, P.L. Scha€er, D.H. Stjohn, Development of the as-cast microstructure in magnesium±aluminium alloys, n.d. www.elsevier.com/locate/ligandmet.
    [26] S. Barbagallo, H.I. Laukli, O. Lohne, E. Cerri, Divorced eutectic in a HPDC magnesium-aluminum alloy, in: J Alloys Compd, 2004: pp. 226–232. https://doi.org/10.1016/j.jallcom.2003.11.174.
    [27] S.J. Huang, C. Fang, V. Rajagopal, Y.L. Chen, Effect of different processes on hydrogen storage properties of AZ magnesium alloy, in: Materials Science Forum, Trans Tech Publications Ltd, 2018: pp. 230–235. https://doi.org/10.4028/www.scientific.net/MSF.920.230.
    [28] S. Richmire, K. Hall, M. Haghshenas, Design of experiment study on hardness variations in friction stir welding of AM60 Mg alloy, Journal of Magnesium and Alloys. 6 (2018) 215–228. https://doi.org/10.1016/j.jma.2018.07.002.
    [29] T. Noritake, M. Aoki, S. Towata, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata, Chemical bonding of hydrogen in MgH2, Appl Phys Lett. 81 (2002) 2008–2010. https://doi.org/10.1063/1.1506007.
    [30] T. Noritake, S. Towata, M. Aoki, Y. Seno, Y. Hirose, E. Nishibori, M. Takata, M. Sakata, Charge density measurement in MgH2 by synchrotron X-ray diffraction, in: J Alloys Compd, 2003: pp. 84–86. https://doi.org/10.1016/S0925-8388(03)00104-X.
    [31] M. Martin, C. Gommel, C. Borkhart, E. Fromm, Absorption and desorption kinetics of hydrogen storage alloys, 1996.
    [32] D.R. Leiva, R. Floriano, J. Huot, A.M. Jorge, C. Bolfarini, C.S. Kiminami, T.T. Ishikawa, W.J. Botta, Nanostructured MgH2 prepared by cold rolling and cold forging, in: J Alloys Compd, 2011. https://doi.org/10.1016/j.jallcom.2011.01.097.
    [33] C. Chiu, S.J. Huang, T.Y. Chou, E. Rabkin, Improving hydrogen storage performance of AZ31 Mg alloy by equal channel angular pressing and additives, J Alloys Compd. 743 (2018) 437–447. https://doi.org/10.1016/j.jallcom.2018.01.412.
    [34] S.J. Huang, C. Chiu, T.Y. Chou, E. Rabkin, Effect of equal channel angular pressing (ECAP) on hydrogen storage properties of commercial magnesium alloy AZ61, Int J Hydrogen Energy. 43 (2018) 4371–4380. https://doi.org/10.1016/j.ijhydene.2018.01.044.
    [35] S. Niyomsoan, D.R. Leiva, R.A. Silva, L.F. Chanchetti, R.N. Shahid, S. Scudino, P. Gargarella, W.J. Botta, Effects of graphite addition and air exposure on ball-milled Mg–Al alloys for hydrogen storage, Int J Hydrogen Energy. 44 (2019) 23257–23266. https://doi.org/10.1016/j.ijhydene.2019.07.071.
    [36] H. chang ZHONG, C. long LIN, Z. yu DU, C. yan CAO, C. LIANG, Q. rong ZHENG, L. yang DAI, Hydrogen storage properties of Mg(Al) solid solution alloy doped with LaF3 by ball milling, Transactions of Nonferrous Metals Society of China (English Edition). 32 (2022) 1969–1980. https://doi.org/10.1016/S1003-6326(22)65923-5.
    [37] J. Wang, W. Zhang, Y. Cheng, D. Ke, S. Han, Hydrogenation/dehydrogenation performances of the MgH2-WS2 composites, Journal Wuhan University of Technology, Materials Science Edition. 30 (2015) 670–673. https://doi.org/10.1007/s11595-015-1209-3.
    [38] L. Wang, Y. Hu, J. Lin, H. Leng, C. Sun, C. Wu, Q. Li, F. Pan, The hydrogen storage performance and catalytic mechanism of the MgH2-MoS2 composite, Journal of Magnesium and Alloys. (2022). https://doi.org/10.1016/j.jma.2022.06.001.
    [39] M.K. Sahu, R.K. Sahu, Fabrication of Aluminum Matrix Composites by Stir Casting Technique and Stirring Process Parameters Optimization, in: Advanced Casting Technologies, InTech, 2018. https://doi.org/10.5772/intechopen.73485.
    [40] M.K. Sahu, R.K. Sahu, Fabrication of Aluminum Matrix Composites by Stir Casting Technique and Stirring Process Parameters Optimization, in: Advanced Casting Technologies, InTech, 2018. https://doi.org/10.5772/intechopen.73485.
    [41] Methods for phase diagram determination., Elsevier, 2007.
    [42] R. Pippan, F. Wetscher, M. Hafok, A. Vorhauer, I. Sabirov, The limits of refinement by severe plastic deformation, Adv Eng Mater. 8 (2006) 1046–1056. https://doi.org/10.1002/adem.200600133.
    [43] D.J. Lee, E.Y. Yoon, S.H. Lee, S.Y. Kang, H.S. Kim, FINITE ELEMENT ANALYSIS FOR COMPRESSION BEHAVIOR OF HIGH PRESSURE TORSION PROCESSING, 2012.
    [44] M. Shaban Ghazani, A. Vajd, B. Mosadeg, 3D finite element study of temperature variations during equal channel angular pressing, 2014.
    [45] J. Gao, T. He, Y. Huo, T. Yao, H. Hong, Effects of different deformation routes of ECAP on AA6063 mechanical properties and microstructure, in: Procedia Manuf, Elsevier B.V., 2020: pp. 119–124. https://doi.org/10.1016/j.promfg.2020.08.022.
    [46] J.S. Benjamin, VOLIN are Nickel Alloys Group Research Manager and Research Metallurgist, Metal Physics Section, respectively, The International Nickel Company, Inc, Paul D. Merica Research Lab-oratory, n.d.
    [47] Robert R , Varin Tomasz Czujko, Zbigniew S Wronski , Nano materials for solid state hydrogen storage 2009
    [48] A. Eftekhari, P. Jafarkhani, F. Moztarzadeh, High-yield synthesis of carbon nanotubes using a water-soluble catalyst support in catalytic chemical vapor deposition, Carbon N Y. 44 (2006) 1343–1345. https://doi.org/10.1016/j.carbon.2005.12.006.
    [49] K.A. Shah, B.A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates, Mater Sci Semicond Process. 41 (2016) 67–82. https://doi.org/10.1016/j.mssp.2015.08.013.
    [50] D. Chandra, J.J. Reilly, R. Chellappa, Metal Hydrides for Vehicular Applications: The State of the Art, n.d.
    [51] R.A. Varin, Tomasz. Czujko, Z.S. Wronski, Nanomaterials for solid state hydrogen storage, Springer, 2009.
    [52] H.E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, 1956. https://pubs.acs.org/sharingguidelines.
    [53] J.A. Turner, A Realizable Renewable Energy Future, n.d. http://www.awea.org/faq/bal.html.
    [54] J.O. Abe, A.P.I. Popoola, E. Ajenifuja, O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int J Hydrogen Energy. 44 (2019) 15072–15086. https://doi.org/10.1016/j.ijhydene.2019.04.068.
    [55] V.A. Yartys, M. V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M. Bellosta von Colbe, J.C. Crivello, F. Cuevas, R. V. Denys, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, I. Jacob, T.R. Jensen, P.E. de Jongh, J.M. Joubert, M.A. Kuzovnikov, M. Latroche, M. Paskevicius, L. Pasquini, L. Popilevsky, V.M. Skripnyuk, E. Rabkin, M. V. Sofianos, A. Stuart, G. Walker, H. Wang, C.J. Webb, M. Zhu, Magnesium based materials for hydrogen based energy storage: Past, present and future, Int J Hydrogen Energy. 44 (2019) 7809–7859. https://doi.org/10.1016/j.ijhydene.2018.12.212.
    [56] X. Ding, R. Chen, J. Zhang, W. Cao, Y. Su, J. Guo, Recent progress on enhancing the hydrogen storage properties of Mg-based materials via fabricating nanostructures: A critical review, J Alloys Compd. 897 (2022). https://doi.org/10.1016/j.jallcom.2021.163137.
    [57] D.J. Durbin, C. Malardier-Jugroot, Review of hydrogen storage techniques for on board vehicle applications, Int J Hydrogen Energy. 38 (2013) 14595–14617. https://doi.org/10.1016/j.ijhydene.2013.07.058.
    [58] L. Ouyang, F. Liu, H. Wang, J. Liu, X.S. Yang, L. Sun, M. Zhu, Magnesium-based hydrogen storage compounds: A review, J Alloys Compd. 832 (2020). https://doi.org/10.1016/j.jallcom.2020.154865.
    [59] J. Zhang, S. Yan, H. Qu, Recent progress in magnesium hydride modified through catalysis and nanoconfinement, Int J Hydrogen Energy. 43 (2018) 1545–1565. https://doi.org/10.1016/j.ijhydene.2017.11.135.
    [60] A.G. Olabi, C. Onumaegbu, T. Wilberforce, M. Ramadan, M.A. Abdelkareem, A.H. Al – Alami, Critical review of energy storage systems, Energy. 214 (2021). https://doi.org/10.1016/j.energy.2020.118987.
    [61] H. Gao, R. Shi, Y. Shao, Y. Liu, Y. Zhu, J. Zhang, X. Hu, L. Li, Z. Ba, One-step self-assembly of TiO2/MXene heterostructures for improving the hydrogen storage performance of magnesium hydride, J Alloys Compd. 895 (2022). https://doi.org/10.1016/j.jallcom.2021.162635.
    [62] J. Zhang, H. Qu, S. Yan, G. Wu, X.F. Yu, P. Peng, Enhanced hydrogen diffusion in magnesium based hydride induced by strain and doping from first principle study, J Alloys Compd. 694 (2017) 687–693. https://doi.org/10.1016/j.jallcom.2016.10.058.
    [63] Z. Ma, J. Zou, D. Khan, W. Zhu, C. Hu, X. Zeng, W. Ding, Preparation and hydrogen storage properties of MgH2-trimesic acid-TM MOF (TM=Co, Fe) composites, J Mater Sci Technol. 35 (2019) 2132–2143. https://doi.org/10.1016/j.jmst.2019.05.049.
    [64] X. Yang, Y. Zhu, J. Zhang, Y. Zhang, Y. Liu, H. Lin, T. Wang, L. Li, Effect of partial substitution of Ti for Al on the phase structure and electrochemical hydrogen storage properties of Mg3AlNi2 alloy, J Alloys Compd. 746 (2018) 421–427. https://doi.org/10.1016/j.jallcom.2018.02.335.
    [65] H.Y. Zhou, X.X. Lan, Z.M. Wang, Q.R. Yao, C.Y. Ni, W.P. Liu, Effect of rapid solidification on phase structure and hydrogen storage properties of Mg 70(Ni 0.75La 0.25) 30 alloy, Int J Hydrogen Energy. 37 (2012) 13178–13184. https://doi.org/10.1016/j.ijhydene.2012.03.133.
    [66] J. Zhang, H. Qu, G. Wu, L.B. Song, X.F. Yu, D.W. Zhou, Remarkably enhanced dehydrogenation properties and mechanisms of MgH2 by sequential-doping of nickel and graphene, Int J Hydrogen Energy. 41 (2016) 17433–17441. https://doi.org/10.1016/j.ijhydene.2016.07.204.
    [67] V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, Improving hydrogen storage properties of magnesium based alloys by equal channel angular pressing, Int J Hydrogen Energy. 34 (2009) 6320–6324. https://doi.org/10.1016/j.ijhydene.2009.05.136.
    [68] R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog Mater Sci. 51 (2006) 881–981. https://doi.org/10.1016/j.pmatsci.2006.02.003.
    [69] A.M. Jorge, E. Prokofiev, G. Ferreira De Lima, E. Rauch, M. Veron, W.J. Botta, M. Kawasaki, T.G. Langdon, An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing, Int J Hydrogen Energy. 38 (2013) 8306–8312. https://doi.org/10.1016/j.ijhydene.2013.03.158.
    [70] W.J. Botta, A.M. Jorge, M. Veron, E.F. Rauch, E. Ferrie, A.R. Yavari, J. Huot, D.R. Leiva, H-sorption properties and structural evolution of Mg processed by severe plastic deformation, J Alloys Compd. 580 (2013). https://doi.org/10.1016/j.jallcom.2013.03.013.
    [71] A.M. Jorge, G. Ferreira De Lima, M.R. Martins Triques, W.J. Botta, C.S. Kiminami, R.P. Nogueira, A.R. Yavari, T.G. Langdon, Correlation between hydrogen storage properties and textures induced in magnesium through ECAP and cold rolling, Int J Hydrogen Energy. 39 (2014) 3810–3821. https://doi.org/10.1016/j.ijhydene.2013.12.154.
    [72] J. Zhang, Y. Yao, L. He, X.J. Zhou, L.P. Yu, X.Z. Lu, P. Peng, Hydrogen storage properties and mechanisms of as-cast, homogenized and ECAP processed Mg98.5Y1Zn0.5 alloys containing LPSO phase, Energy. 217 (2021). https://doi.org/10.1016/j.energy.2020.119315.
    [73] S.D. House, J.J. Vajo, C. Ren, A.A. Rockett, I.M. Robertson, Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials, Acta Mater. 86 (2015) 55–68. https://doi.org/10.1016/j.actamat.2014.11.047.
    [74] H. Shao, G. Xin, J. Zheng, X. Li, E. Akiba, Nanotechnology in Mg-based materials for hydrogen storage, Nano Energy. 1 (2012) 590–601. https://doi.org/10.1016/j.nanoen.2012.05.005.
    [75] Z. Zhao-Karger, J. Hu, A. Roth, D. Wang, C. Kübel, W. Lohstroh, M. Fichtner, Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold, Chemical Communications. 46 (2010) 8353–8355. https://doi.org/10.1039/c0cc03072d.
    [76] V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review, Int J Energy Res. 31 (2007) 637–663. https://doi.org/10.1002/er.1284.
    [77] Y. Jia, Y. Guo, J. Zou, X. Yao, Hydrogenation/dehydrogenation in MgH2-activated carbon composites prepared by ball milling, Int J Hydrogen Energy. 37 (2012) 7579–7585. https://doi.org/10.1016/j.ijhydene.2012.01.015.
    [78] S.J. Huang, V. Rajagopal, Y.L. Chen, Y.H. Chiu, Improving the hydrogenation properties of AZ31-Mg alloys with different carbonaceous additives by high energy ball milling (HEBM) and equal channel angular pressing (ECAP), Int J Hydrogen Energy. 45 (2020) 22291–22301. https://doi.org/10.1016/j.ijhydene.2019.10.032.
    [79] V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy, Acta Mater. 52 (2004) 405–414. https://doi.org/10.1016/j.actamat.2003.09.025.
    [80] S.J. Huang, V. Rajagopal, A.N. Ali, Influence of the ECAP and HEBM processes and the addition of Ni catalyst on the hydrogen storage properties of AZ31-x Ni (x=0,2,4) alloy, Int J Hydrogen Energy. 44 (2019) 1047–1058. https://doi.org/10.1016/j.ijhydene.2018.11.005.
    [81] L. Wang, J. Jiang, A. Ma, Y. Li, D. Song, A critical review of mg-based hydrogen storage materials processed by equal channel angular pressing, Metals (Basel). 7 (2017). https://doi.org/10.3390/met7090324.
    [82] H. Fu, W. Wu, Y. Dou, B. Liu, H. Li, Q. Peng, Hydrogen diffusion kinetics and structural integrity of superhigh pressure Mg-5 wt%Ni alloys with dendrite interface, J Power Sources. 320 (2016) 212–221. https://doi.org/10.1016/j.jpowsour.2016.04.045.
    [83] A.A.C. Asselli, S.F. Santos, J. Huot, Hydrogen storage in filed magnesium, J Alloys Compd. 687 (2016) 586–594. https://doi.org/10.1016/j.jallcom.2016.06.109.
    [84] T. Yang, Z. Yuan, W. Bu, Z. Jia, Y. Qi, Y. Zhang, Evolution of the phase structure and hydrogen storage thermodynamics and kinetics of Mg88Y12 binary alloy, Int J Hydrogen Energy. 41 (2016) 2689–2699. https://doi.org/10.1016/j.ijhydene.2015.12.099.
    [85] S. Panda, J.J. Fundenberger, Y. Zhao, J. Zou, L.S. Toth, T. Grosdidier, Effect of initial powder type on the hydrogen storage properties of high-pressure torsion consolidated Mg, Int J Hydrogen Energy. 42 (2017) 22438–22448. https://doi.org/10.1016/j.ijhydene.2017.05.097.
    [86] T. Kondo, K. Shindo, Y. Sakurai, Dependence of hydrogen storage characteristics of Mg-TiFe 0.92Mn0.08 composite on amount of TiFe 0.92Mn0.08, J Alloys Compd. 404–406 (2005) 511–514. https://doi.org/10.1016/j.jallcom.2004.10.090.
    [87] L. Popilevsky, V.M. Skripnyuk, M. Beregovsky, M. Sezen, Y. Amouyal, E. Rabkin, Hydrogen storage and thermal transport properties of pelletized porous Mg-2 wt.% multiwall carbon nanotubes and Mg-2 wt.% graphite composites, Int J Hydrogen Energy. 41 (2016) 14461–14474. https://doi.org/10.1016/j.ijhydene.2016.03.014.
    [88] T. Liu, T. Zhang, X. Zhang, X. Li, Synthesis and hydrogen storage properties of ultrafine Mg-Zn particles, Int J Hydrogen Energy. 36 (2011) 3515–3520. https://doi.org/10.1016/j.ijhydene.2010.12.049.
    [89] S. Dal Toè, S. Lo Russo, A. Maddalena, G. Principi, A. Saber, S. Sartori, T. Spataru, Hydrogen desorption from magnesium hydride-graphite nanocomposites produced by ball milling, in: Mater Sci Eng B Solid State Mater Adv Technol, 2004: pp. 24–27. https://doi.org/10.1016/j.mseb.2003.10.030.
    [90] J.C. Crivello, T. Nobuki, T. Kuji, Improvement of Mg-Al alloys for hydrogen storage applications, Int J Hydrogen Energy. 34 (2009) 1937–1943. https://doi.org/10.1016/j.ijhydene.2008.11.039.
    [91] H.C. Zhong, H. Wang, L.Z. Ouyang, M. Zhu, Microstructure and hydrogen storage properties of Mg-Sn nanocomposite by mechanical milling, J Alloys Compd. 509 (2011) 4268–4272. https://doi.org/10.1016/j.jallcom.2010.11.072.
    [92] H.C. Zhong, H. Wang, L.Z. Ouyang, Improving the hydrogen storage properties of MgH2 by reversibly forming Mg-Al solid solution alloys, Int J Hydrogen Energy. 39 (2014) 3320–3326. https://doi.org/10.1016/j.ijhydene.2013.12.074.
    [93] Y. Mishin, W.J. Boettinger, Thermodynamic model of hydride formation and dissolution in spherical particles, Acta Mater. 58 (2010) 4968–4977. https://doi.org/10.1016/j.actamat.2010.05.030.
    [94] E. Rabkin, V.M. Skripnyuk, On pressure hysteresis during hydrogenation of metallic powders, Scr Mater. 49 (2003) 477–483. https://doi.org/10.1016/S1359-6462(03)00288-4.
    [95] A. Sharma, J. Hickman, N. Gazit, E. Rabkin, Y. Mishin, Nickel nanoparticles set a new record of strength, Nat Commun. 9 (2018). https://doi.org/10.1038/s41467-018-06575-6.
    [96] H. Okamoto, H.L. Su, M. Harmelin, R. Donnadieu, C. Baetzner, H.J. Seifert, H.L. Ltlkas, G. Effenberg, E. Aldinger, AI-Mg (Aluminum-Magnesium), 1982.
    [97] A. Andreasen, Hydrogenation properties of Mg-Al alloys, Int J Hydrogen Energy. 33 (2008) 7489–7497. https://doi.org/10.1016/j.ijhydene.2008.09.095.
    [98] L. Popilevsky, V.M. Skripnyuk, Y. Amouyal, E. Rabkin, Tuning the thermal conductivity of hydrogenated porous magnesium hydride composites with the aid of carbonaceous additives, Int J Hydrogen Energy. 42 (2017) 22395–22405. https://doi.org/10.1016/j.ijhydene.2017.04.088.
    [99] H. Shao, L. He, H. Lin, H.W. Li, Progress and Trends in Magnesium-Based Materials for Energy-Storage Research: A Review, Energy Technology. 6 (2018) 445–458. https://doi.org/10.1002/ente.201700401.
    [100] K.C. Kim, A review on design strategies for metal hydrides with enhanced reaction thermodynamics for hydrogen storage applications, Int J Energy Res. 42 (2018) 1455–1468. https://doi.org/10.1002/er.3919.
    [101] J. Zhang, S. Yan, H. Qu, Stress/strain effects on thermodynamic properties of magnesium hydride: A brief review, Int J Hydrogen Energy. 42 (2017) 16603–16610. https://doi.org/10.1016/j.ijhydene.2017.05.174.
    [102] X.L. Zhang, Y.F. Liu, X. Zhang, J.J. Hu, M.X. Gao, H.G. Pan, Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis, Mater Today Nano. 9 (2020). https://doi.org/10.1016/j.mtnano.2019.100064.
    [103] I.P. Jain, Hydrogen the fuel for 21st century, Int J Hydrogen Energy. 34 (2009) 7368–7378. https://doi.org/10.1016/j.ijhydene.2009.05.093.
    [104] M.S. El-Eskandarany, Recent developments in the fabrication, characterization and implementation of MgH2-based solid-hydrogen materials in the Kuwait Institute for Scientific Research, RSC Adv. 9 (2019) 9907–9930. https://doi.org/10.1039/c9ra00287a.
    [105] T. Sadhasivam, H.T. Kim, S. Jung, S.H. Roh, J.H. Park, H.Y. Jung, Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: A review, Renewable and Sustainable Energy Reviews. 72 (2017) 523–534. https://doi.org/10.1016/j.rser.2017.01.107.
    [106] M. Tian, C. Shang, Nano-structured MgH2 catalyzed by TiC nanoparticles for hydrogen storage, Journal of Chemical Technology and Biotechnology. 86 (2011) 69–74. https://doi.org/10.1002/jctb.2479.
    [107] A. Bhatnagar, J.K. Johnson, M.A. Shaz, O.N. Srivastava, TiH2 as a Dynamic Additive for Improving the De/Rehydrogenation Properties of MgH2: A Combined Experimental and Theoretical Mechanistic Investigation, Journal of Physical Chemistry C. 122 (2018) 21248–21261. https://doi.org/10.1021/acs.jpcc.8b07640.
    [108] I.P. Jain, C. Lal, A. Jain, Hydrogen storage in Mg: A most promising material, Int J Hydrogen Energy. 35 (2010) 5133–5144. https://doi.org/10.1016/j.ijhydene.2009.08.088.
    [109] M. Zhang, X. Xiao, X. Wang, M. Chen, Y. Lu, M. Liu, L. Chen, Excellent catalysis of TiO 2 nanosheets with high-surface-energy {001} facets on the hydrogen storage properties of MgH 2, Nanoscale. 11 (2019) 7465–7473. https://doi.org/10.1039/c8nr10275a.
    [110] C. Zhou, R.C. Bowman, Z.Z. Fang, J. Lu, L. Xu, P. Sun, H. Liu, H. Wu, Y. Liu, Amorphous TiCu-Based Additives for Improving Hydrogen Storage Properties of Magnesium Hydride, ACS Appl Mater Interfaces. 11 (2019) 38868–38879. https://doi.org/10.1021/acsami.9b16076.
    [111] Q. Kong, H. Zhang, Z. Yuan, J. Liu, L. Li, Y. Fan, G. Fan, B. Liu, Hamamelis -like K2Ti6O13 Synthesized by Alkali Treatment of Ti3C2 MXene: Catalysis for Hydrogen Storage in MgH2 , ACS Sustain Chem Eng. 8 (2020) 4755–4763. https://doi.org/10.1021/acssuschemeng.9b06936.
    [112] G. Chen, Y. Zhang, J. Chen, X. Guo, Y. Zhu, L. Li, Enhancing hydrogen storage performances of MgH2 by Ni nano-particles over mesoporous carbon CMK-3, Nanotechnology. 29 (2018). https://doi.org/10.1088/1361-6528/aabcf3.
    [113] Z. Yuan, Y. Sui, T. Zhai, Y. Yin, L. Luo, D. Feng, Influence of CeO2 nanoparticles on microstructure and hydrogen storage performance of Mg-Ni-Zn alloy, Mater Charact. 178 (2021). https://doi.org/10.1016/j.matchar.2021.111248.
    [114] Y. Jia, S. Han, W. Zhang, X. Zhao, P. Sun, Y. Liu, H. Shi, J. Wang, Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2, Int J Hydrogen Energy. 38 (2013) 2352–2356. https://doi.org/10.1016/j.ijhydene.2012.12.018.
    [115] X. Xie, X. Ma, P. Liu, J. Shang, X. Li, T. Liu, Formation of Multiple-Phase Catalysts for the Hydrogen Storage of Mg Nanoparticles by Adding Flowerlike NiS, ACS Appl Mater Interfaces. 9 (2017) 5937–5946. https://doi.org/10.1021/acsami.6b13222.
    [116] W. Zhang, G. Xu, Y. Cheng, L. Chen, Q. Huo, S. Liu, Improved hydrogen storage properties of MgH2 by the addition of FeS2 micro-spheres, Dalton Transactions. 47 (2018) 5217–5225. https://doi.org/10.1039/c7dt04665k.
    [117] L. Ji, L. Zhang, X. Yang, X. Zhu, L. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Transactions. 49 (2020) 4146–4154. https://doi.org/10.1039/d0dt00230e.
    [118] X. Ding, H. Ding, Y. Song, C. Xiang, Y. Li, Q. Zhang, Activity-Tuning of Supported Co–Ni Nanocatalysts via Composition and Morphology for Hydrogen Storage in MgH2, Front Chem. 7 (2020). https://doi.org/10.3389/fchem.2019.00937.
    [119] K. Wang, Q. Deng, Constructing Core-Shell Co@N-Rich Carbon Additives Toward Enhanced Hydrogen Storage Performance of Magnesium Hydride, Front Chem. 8 (2020). https://doi.org/10.3389/fchem.2020.00223.
    [120] R.R. Shahi, A.P. Tiwari, M.A. Shaz, O.N. Srivastava, Studies on de/rehydrogenation characteristics of nanocrystalline MgH 2 co-catalyzed with Ti, Fe and Ni, Int J Hydrogen Energy. 38 (2013) 2778–2784. https://doi.org/10.1016/j.ijhydene.2012.11.073.
    [121] B.P. Tarasov, S.A. Mozhzhukhin, A.A. Arbuzov, A.A. Volodin, E.E. Fokina, P. V. Fursikov, M. V. Lototskyy, V.A. Yartys, Features of the Hydrogenation of Magnesium with a Ni-Graphene Coating, Russian Journal of Physical Chemistry A. 94 (2020) 996–1001. https://doi.org/10.1134/S0036024420050222.
    [122] S.K. Verma, A. Bhatnagar, V. Shukla, P.K. Soni, A.P. Pandey, T.P. Yadav, O.N. Srivastava, Multiple improvements of hydrogen sorption and their mechanism for MgH2 catalyzed through TiH2@Gr, Int J Hydrogen Energy. 45 (2020) 19516–19530. https://doi.org/10.1016/j.ijhydene.2020.05.031.
    [123] D. Pukazhselvan, K.S. Sandhya, D. Ramasamy, A. Shaula, D.P. Fagg, Transformation of Metallic Ti to TiH2 Phase in the Ti/MgH2 Composite and Its Influence on the Hydrogen Storage Behavior of MgH2, ChemPhysChem. 21 (2020) 1195–1201. https://doi.org/10.1002/cphc.202000031.
    [124] K.B. Park, W.S. Ko, J.O. Fadonougbo, T.W. Na, H.T. Im, J.Y. Park, J.W. Kang, H.S. Kang, C.S. Park, H.K. Park, Effect of Fe substitution by Mn and Cr on first hydrogenation kinetics of air-exposed TiFe-based hydrogen storage alloy, Mater Charact. 178 (2021). https://doi.org/10.1016/j.matchar.2021.111246.
    [125] A. Taherkhani, S.Z. Mortazavi, A. Reyhani, A. Tayal, W.A. Caliebe, M.M. Moradi, H. Noei, Temperature-dependent hydrogen storage mechanism in palladium nanoparticles decorated on multi-walled carbon nanotubes, Int J Hydrogen Energy. 48 (2023) 9734–9747. https://doi.org/10.1016/j.ijhydene.2022.11.248.
    [126] I. Wiesel, H. Arbel, A. Albu-Yaron, R. Popovitz-Biro, J.M. Gordon, D. Feuermann, R. Tenne, Synthesis of WS2 and MoS2 fullerene-like nanoparticles from solid precursors, Nano Res. 2 (2009) 416–424. https://doi.org/10.1007/s12274-009-9034-7.
    [127] A. Rothschild, J. Sloan, R. Tenne, Growth of WS2 nanotubes phases, J Am Chem Soc. 122 (2000) 5169–5179. https://doi.org/10.1021/ja994118v.
    [128] P.N. Immanuel, S.J. Huang, V. Danchuk, A. Sedova, J. Prilusky, A. Goldreich, H. Shalom, A. Musin, L. Yadgarov, Improving the Stability of Halide Perovskite Solar Cells Using Nanoparticles of Tungsten Disulfide, Nanomaterials. 12 (2022). https://doi.org/10.3390/nano12244454.
    [129] S. Gao, H. Wang, X. Wang, H. Liu, T. He, Y. Wang, C. Wu, S. Li, M. Yan, MoSe2 hollow nanospheres decorated with FeNi3 nanoparticles for enhancing the hydrogen storage properties of MgH2, J Alloys Compd. 830 (2020). https://doi.org/10.1016/j.jallcom.2020.154631.
    [130] Q. Zhang, L. Zang, Y. Huang, P. Gao, L. Jiao, H. Yuan, Y. Wang, Improved hydrogen storage properties of MgH2 with Ni-based compounds, Int J Hydrogen Energy. 42 (2017) 24247–24255. https://doi.org/10.1016/j.ijhydene.2017.07.220.
    [131] L. Zhang, C. Zhao, F. Wu, Y. Wang, Carbon-wrapped Ti-Co bimetallic oxide nanocages: Novel and efficient catalysts for hydrogen storage in magnesium hydride, J Alloys Compd. 952 (2023). https://doi.org/10.1016/j.jallcom.2023.170002.
    [132] Y. Li, Y. Zhang, H. Shang, Y. Qi, P. Li, D. Zhao, Investigation on structure and hydrogen storage performance of as-milled and cast Mg90Al10 alloys, Int J Hydrogen Energy. 43 (2018) 6642–6653. https://doi.org/10.1016/j.ijhydene.2018.02.086.
    [133] P. Wang, Z. Tian, Z. Wang, C. Xia, T. Yang, X. Ou, Improved hydrogen storage properties of MgH2 using transition metal sulfides as catalyst, Int J Hydrogen Energy. 46 (2021) 27107–27118. https://doi.org/10.1016/j.ijhydene.2021.05.172.
    [134] L. Xie, J. Li, T. Zhang, L. Song, Dehydrogenation steps and factors controlling desorption kinetics of a Mg[sbnd]Ce hydrogen storage alloy, Int J Hydrogen Energy. 42 (2017) 21121–21130. https://doi.org/10.1016/j.ijhydene.2017.07.046.
    [135] S. Wang, H. Yong, J. Yao, J. Ma, B. Liu, J. Hu, Y. Zhang, Influence of the phase evolution and hydrogen storage behaviors of Mg-RE alloy by a multi-valence Mo-based catalyst, J Energy Storage. 58 (2023). https://doi.org/10.1016/j.est.2022.106397.
    [136] Z. Yuan, C. Li, T. Li, T. Zhai, Y. Sui, X. Li, D. Feng, Y. Zhang, Improved hydrogen storage performance of Sm-Mg composites by adding nano-graphite, J Alloys Compd. 935 (2023). https://doi.org/10.1016/j.jallcom.2022.168144.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 2025/08/28 (校外網路)
    全文公開日期 2025/08/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE