簡易檢索 / 詳目顯示

研究生: 方傑
Chieh Fang
論文名稱: 不同製程對AZ鎂合金儲氫性能之影響
Effect of different processes on hydrogen storage properties of AZ magnesium alloy
指導教授: 黃崧任
Song-Jeng Huang
口試委員: 丘群
CHIUN CHIOU
陳復國
FU-GUO CHEN
林柏州
BO-JOU LIN
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 86
中文關鍵詞: 儲氫等徑轉角擠壓 (ECAP)高能球磨 (HEBM)AZ鎂合金
外文關鍵詞: hydrogen storage, equal channel angular pressing, high energy ball milling, AZ magnesium alloy
相關次數: 點閱:298下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用AZ31與AZ91鎂合金作為儲氫材料,比較等徑轉角擠壓 (ECAP) 製程與機械合金法 (HEBM) 製程對AZ鎂合金儲氫性能的影響,除了探討製程對AZ鎂合金儲氫性能的影響,本研究亦探討AZ31與AZ91鋁含量的不同對儲氫性能的影響。
    研究結果顯示,AZ鎂合金經過ECAP或HEBM製程crystal size皆有下降,本研究之AZ31鎂合金在經過路徑為BC、道次為8道次的ECAP製程後較經過球料比30:1、轉速300rpm之HEBM製程,有較快的吸放氫速率,儲氫量分別為7.0與6.8wt.%。而AZ91鎂合金在經過球料比30:1、轉速300rpm之HEBM製程,較經過路徑為BC、道次為8道次的ECAP製程後,有較快的吸放氫速率,儲氫量皆為6.7wt.%。本研究也發現AZ鎂合金在三種不同溫度375°C、350°C 與325°C的工作溫度下,吸氫速率與儲氫量在高溫時有較佳的表現,且鋁含量高的材料活化能較低。


    In this research, AZ31 and AZ91 magnesium alloys were used as hydrogen storage materials to compare the effects of equal channel angular pressing (ECAP) and high energy ball milling (HEBM) processes on the hydrogen storage properties of AZ magnesium alloys. In addition, the effects of using different AZ magnesium alloys (AZ31 and AZ91) with the same processes and parameters on the hydrogen storage properties was investigated.
    The results show that the crystal size of AZ magnesium alloy has been decreased by both ECAP and HEBM processes. It was also revealed that AZ31 magnesium alloy processed by ECAP route BC with 8 passes has faster absorption and desorption rate than AZ31 magnesium alloy processed by HEBM ball material ratio 30:1 with 300rpm. The capacity of two samples are 7.0 and 6.8 wt.%. The AZ91 magnesium alloy processed by HEBM ball material ratio 30:1 with 300rpm has faster hydrogen absorption and desorption rate than that of AZ91 magnesium alloy processed by ECAP route BC with 8 passes. The capacity of two samples are both 6.7 wt.%. Furthermore, hydrogen absorption rate and storage capacity of AZ magnesium alloy at three different temperatures (375°C, 350°C and 325°C) was studied and there was increasing of performance for increasing temperature. It was also investigated that the material with higher aluminum content has lower activation energy.

    目錄 摘要 I 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 原理與文獻回顧 4 2.1 儲氫技術與方法 4 2.1.1高壓氣態儲氫 5 2.1.2 低溫液態儲氫 7 2.1.3 固態儲氫 8 2.2 儲氫合金吸放氫原理 10 2.2.1 動力學性質 10 2.2.2 熱力學性質 12 2.2.3活化能計算 14 2.2.4 PCT曲線 15 2.3 固態儲氫合金 17 2.3.1 "AXBY" 型儲氫合金 17 2.3.2 鎂基材料儲氫性質 20 2.3.3劇烈塑性變形法 21 2.3.4 高能球磨法 27 2.4鎂基材料儲氫文獻 28 2.4.1等徑轉角擠壓製備鎂基儲氫材料 28 2.4.2高能球磨法製備鎂基儲氫材料 32 2.5文獻回顧整理 36 第三章 實驗方法 40 3.1 實驗流程 40 3.2 實驗材料製備 41 3.2.1 熱處理高溫爐 41 3.2.2 等徑轉角擠壓 42 3.2.3 高能球磨法 43 3.3 SEM掃描式電子顯微鏡 44 3.4 X-ray 繞射儀與分析 45 3.5 Sievert-type 吸放氫量測系統 46 第四章 結果與討論 49 4.1 材料微觀結構與粒徑分析 49 4.1.1 AZ鎂合金均質化處理前後與ECAP後微觀分析 49 4.1.2 合金粉末觀察 53 4.1.3 粒徑分析 58 4.2 AZ31與AZ91鎂合金之吸放氫特性 59 4.2.1 AZ31與AZ91鎂合金儲氫粉末活化 59 4.2.2 AZ31與AZ91鎂合金儲氫粉末之吸放氫動力學 61 4.3 活化能計算 74 4.4 與文獻之比較 78 第五章 結論 81 參考文獻 83

    【1】 蘇順發,儲氫材料,科學發展學報,第483期,12-17,2013年3月。
    【2】 Y. Jia, C. Sun , S. Shen, J. Zou, S. S. Mao, X. Yao, “Combination of nanosizing and interfacial effect: Future perspective for designing Mg-based nanomaterials for hydrogen storage”, Renewable and Sustainable Energy Reviews, Vol. 44, 289-303, 2015.
    【3】 A. Andreasen, “Hydrogenation properties of Mg–Al alloys”, International journal of hydrogen energy, Vol. 33, 7489-7497, 2008.
    【4】 T. Graham, “On the Relation of Hydrogen to Palladium”, Proceedings of the Royal Society of London, Vol. 17, 212-220, 1869.
    【5】 J. J. Reilli', R. H. Wiswall,jr, “The reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4”, Inorganic Chemistry, Vol. 7, 2254-2256, 1968.
    【6】 L. Zhou, “Progress and problems in hydrogen storage methods”, Renewable and Sustainable Energy Reviews, Vol. 9, 395-408, 2005.
    【7】 J. S. Benjamin, T. E. Volin, “The Mechanism of Mechanical Alloying”, Metallurgical Transactions, Vol.5, 1929-1934, 1974.
    【8】 J. J. Reilli', R. H. Wiswall,jr, ”Formation and Properties of Iron Titanium Hydride”, Inorganic Chemistry, Vol. 13, 218-222, 1974.
    【9】 F. Stein, M. Palm, G. Sauthoff, “Structure and stability of Laves phases. Part I. Critical assessment of factors controlling Laves phase stability”, Intermetallics, Vol. 12, 713-720, 2004.
    【10】 曲新生、陳發林,氫能技術,五南圖書出版股份有限公司,2006年4月。
    【11】 毛宗強,氫能-21世紀的綠色能源,新文京開發出版股份有限公司,2008年3月。
    【12】 顏子翔、張志成、陳寶東,儲氫技術現況及其面臨問題,中華民國九十九年石油季刊,第46卷,第2期,53-61。
    【13】 Riis, T., E. F. Hagen, ”HYDROGEN PRODUCTION AND STORAGE : R&D Priorities and Gaps”, International Energy Agency, 2006.
    【14】 http://www.intechopen.com/books/hydrogen-storage/hydrogen-storage-for-energy-application
    【15】 U. Eberle, G. Arnold, R. von Helmolt, “Hydrogen storage in metal–hydrogen systems and their derivatives”, Journal of Power Sources, Vol 154, 456-460, 2006.
    【16】 J. Xin, J. Wang, Y. Du, L. Sun, B. Huang, “Site preference and diffusion of hydrogen during hydrogenation of Mg: A first-principles study”, International journal of hydrogen energy, Vol. 41, 3508-3516, 2016.
    【17】 M. Martin, C. Gommel, C. Borkhart, E. Fromm, “Absorption and desorption kinetics of hydrogen storage alloys”, Journal of Alloys and Compounds, Vol. 238, 193-201, 1996.
    【18】 G. Sandrock, “A panoramic overview of hydrogen storage alloys from a gas reaction point of view”, Journal of Alloys and Compounds, Vol. 293-295, 877-888, 1999.
    【19】 吳懿璋,強化相粒徑與含量對AZ61/SiCp鎂合金複合材料於擠製加工及後續退火製程在機械性質之研究,國立台灣科技大學機械工程學系碩士論文,2014年7月。
    【20】 R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, “Bulk nanostructured materials from severe plastic deformation”, Progress in Materials Science, Vol. 45, 103-189, 2000.
    【21】 N. Skryabina, N. Medvedeva, A. Gabov, D. Fruchart, S. Nachev, P. de Rango, ” Impact of Severe Plastic Deformation on the stability of MgH2”, Journal of Alloys and Compounds, Vol. 645, S14-S17, 2015.
    【22】 A. M. Jorge Jr, E. Prokofiev, G. F. de Lima, E. Rauch, M. Veron, W. J. Botta, M. Kawasaki, T. G. Langdon, “An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing”, International journal of hydrogen energy, Vol. 38, 8306-8312, 2013.
    【23】 A.A.C. Asselli, D.R. Leiva, J. Huot, M. Kawasaki, T.G. Langdon,W.J. Botta, “Effects of equal-channel angular pressing and accumulative roll-bonding on hydrogen storage properties of a commercial ZK60 magnesium alloy”, International journal of hydrogen energy, Vol. 40, 16971-16976, 2015.
    【24】 J.-C. Crivello, T. Nobuki, S. Kato, M. Abe, T. Kuji, “Hydrogen absorption properties of the γ-Mg17Al12 phase and its Al-richer domain”, Journal of Alloys and Compounds, Vol. 446-447, 157-161, 2007.
    【25】 M. Bououdina, Z.X. Guo, “Comparative study of mechanical alloying of (Mg1Al) and (Mg1Al1Ni) mixtures for hydrogen storage”, Journal of Alloys and Compounds, Vol. 336, 222-231, 2002.
    【26】 S. Bouaricha, J.P. Dodelet, D. Guay, J. Huot, S. Boily, R. Schulz, “Hydriding behavior of Mg–Al and leached Mg–Al compounds prepared by high-energy ball-milling”, Journal of Alloys and Compounds, Vol.297, 282-293, 2000.
    【27】 J.-C. Crivello, T. Nobuki, T. Kuji, “Improvement of Mg–Al alloys for hydrogen storage applications”, International journal of hydrogen energy, Vol. 34, 1937-1943, 2009.
    【28】 J.-C. Crivello, T. Nobuki, T. Kuji, “Limits of the MgeAl γ-phase range by ball-milling”, Intermetallics, Vol. 15, 1432-1437, 2007.
    【29】 R. Z. Valiev, T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinement”, Progress in Materials Science, Vol. 51, 881-981, 2006.
    【30】 C. Pistidda, N. Bergemann, J. Wurr, A. Rzeszutek, K.T. Møller, B.R.S. Hansen,S. Garroni, C. Horstmann, C. Milanese, A. Girella, O. Metz, K. Taube, T.R. Jensen,D. Thomas, H.P. Liermann, T. Klassen, M. Dornheim, “Hydrogen storage systems from waste Mg alloys”, Journal of Power Sources, Vol. 270, 554-563, 2014.
    【31】 V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok, ” The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg–4.95 wt%Zn–0.71 wt% Zr (ZK60) alloy”, Acta Materialia, Vol. 52, 405-414, 2004.
    【32】 J. Humphreys, M. Hatherly, “Recrystallization and Related Annealing Phenomena”, Pergamon, 1994.
    【33】 黃友聖,AZ61/SiCp鎂基複合材料擠型製程及其擠型管之機械性質研究,國立中正大學機械工程系碩士學位論文,2011年6月。
    【34】 黃政揚,WS2無機奈米管對鎂合金複合材料之機械性質與微觀組織影響之研究,國立台灣科技大學機械工程系碩士學位論文,2015年6月。
    【35】 T. Liu, C. Qin, T. Zhang, Y. Cao, M. Zhua and X. Li, “Synthesis of Mg@Mg17Al12 ultrafine particles with superior hydrogen storage properties by hydrogen plasma–metal reaction”, Journal of Materials Chemistry, Vol. 22, 19831-19838, 2012.
    【36】 A. Andreasen, “Properties of Mg-Al alloys in relation to hydrogen storage”, Risø National Laboratory, 2005.
    【37】 B. H. Zhang, Z. M. Zhang, “Influence of homogenizing on mechanical properties of as-cast AZ31 magnesium alloy”, Transactions of Nonferrous Metals Society of China, Vol. 20, 439-443, 2010.
    【38】 L. Zheng, H. Nie, W. Liang, H. Wang, Y. Wang, “Effect of pre-homogenizing treatment on microstructure and mechanical properties of hot-rolled AZ91 magnesium alloys”, Journal of Magnesium and Alloys, Available online, 2016.
    【39】 劉育承,AZ91D鎂合金切屑廢料作為儲氫材料之儲氫性質與改質,國立台灣科技大學機械工程系碩士學位論文,2016年8月。
    【40】 周暾煜,等徑轉角擠壓 (ECAP) 製程及添加物對AZ鎂合金儲氫性能之影響,國立台灣科技大學機械工程系碩士學位論文,2016年8月。
    【41】 R. B. Figueiredo, T.G. Langdon, “Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP”, Journal of Materials Science, Vol. 45, 4827-4836, 2010.

    QR CODE