簡易檢索 / 詳目顯示

研究生: 葉永瑞
Antonius - Wijaya Suryaputra
論文名稱: A Study on Drop Impingement - Water and Surfactant Solutions onto Various Substrates
A Study on Drop Impingement - Water and Surfactant Solutions onto Various Substrates
指導教授: 林析右
Shi-Yow Lin
口試委員: 蔡瑞瑩
Ruey-Yug Tsay
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 液滴撞擊前進接觸角後退接觸角表面粗糙度PC加熱表面Leidenfrost效應
外文關鍵詞: drop impact, advancing contact angle, receding contact angle, surface roughness, polycarbonate, heated surface, Leidenfrost effect
相關次數: 點閱:262下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本實驗以純水及十二烷基硫酸鈉(SDS)水溶液之液滴撞擊於不同固體表面,進行液滴撞擊之行為研究,其中固體平板包含金平板上之SAM (Self Assembled Monolayer)、聚碳酸酯平板、玻璃平板上之封口膜(parafilm)及加熱之鎳金屬板等。本實驗分析液滴撞擊後之潤濕直徑、接觸角及液滴高度,並進而探討液滴撞擊速度、固體表面之親疏水性、固體之表面粗糙度及液體表面張力等對液滴撞擊行為之影響。
首先以純水液滴撞擊四種SAM (pCBMA, pSBMA, SAM-COOH和 SAM-CH3) 奈米膜,探討液滴撞擊速度及SAM膜親疏水性對液滴撞擊行為之影響。其結果顯示:純水液滴於固體表面上之前進接觸角為影響液滴撞擊行為之主要因素。
接者,本研究以純水及SDS水溶液之液滴撞擊於不同表面粗糙度之PC平板(Rq=15, 32, 114 nm),進而探討固體表面粗糙度及液滴表面張力對液滴撞擊行為之影響。實驗結果顯示:液滴潤濕直徑將受到固體表面粗糙度影響,於液滴撞擊後第一個擴張階段期間,固體表面越平滑,其潤濕直徑則隨之增加。
最後,以純水液滴撞擊加熱至不同溫度之鎳金屬表面,其溫度介於25~300℃之間。結果顯示:表面溫度約於200℃後開始發現Leidenfrost效應。


Droplet impingement experiments were conducted for impacting water drop and surfactant solution (SDS with C > Ccmc) drop onto different solid substrates, including the Self Assembled Monolayer (SAM) coated surfaces, polycarbonate (PC), parafilm and heated nickel surfaces. Relaxations of wetting diameter, contact angle, and drop height were monitored. The roles of impact velocity, hydrophobicity, surface roughness, and surface tension were studied.
The effects of impact velocity and surface hydrophobicity were investigated for water drop impacting onto four coated surfaces (pCBMA, pSBMA, SAM-COOH, and SAM-CH3). The advancing contact angle was found to be the major parameter on the impingement behavior.
The effects of surface roughness and surface tension for drops of pure water and SDS solution impinging on polycarbonate (PC) surfaces were studied for different PC surfaces with Rq = 15, 32, and 114 nm. The relaxation of drop wetting diameter was strongly affected by roughness. The largest wetting diameter during first spreading was observed for the smoothest surface.
The drop impinging was also studied for water drops impacting onto a heated Nickel surface at 25 < T < 300°C. The Leidenfrost effect was observed at temperature ~200°C.

Abstract ii 摘要 iii Acknowledgement iv Contents v List of Figures vi List of Tables ix Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Problem Definition 1 1.3 Research objective and scopes 2 Chapter 2 Literature Review 3 2.1 Plate Characteristics 3 2.2 Advancing and Receding Contact Angle 5 2.3 Surfactant 6 2.4 Surface Tension and Surface Energy 8 2.5 Impact mechanism on the surface 9 2.6 Leidenfrost Effect 10 2.7 Drop impact on Solid Substrate 13 2.8 Parameter for Characterizing Drop 16 2.9 Surface tension measurement using pendant drop digitization 18 Chapter 3 Experimental Procedures 20 3.1 Apparatus 20 3.2 Materials 20 3.3 Experimental procedure 21 3.4 Calibration of CCD camera 22 3.5 Drop size measurement 24 3.6 Initial surface tension before impact 24 3.7 Temperature Measurement for Heated Nickel Foil 25 3.8 Plate and Impact Velocity 25 3.9 Data analysis: wetting diameter, contact angle, and impact height 27 Chapter 4 Result and Discussion 29 4.1 Experimental Results 29 4.2 Water Drop Impact on Coated Plates 31 4.3 Water and Surfactant Drop Impact on Different Roughness of PC 39 4.4 High Concentration Surfactant Drop Impact on Parafilm 53 4.5 Water Drop Impact on Heated Nickel Foil 54 Chapter 5 Conclusion 57 REFERENCES 43

[1] Martin, E. R.; Shanahan. Disturbed Triple Line Behavior and Its Use in Surface Analysis. Adv. Colloid. Interf. Sci. 1992, 39, 35-59.
[2] Lee, J. B.; Lee, S. H. Dynamic Wetting and Spreading Characteristics of a Liquid Droplet Impinging on Hydrophobic Textured Surfaces. Langmuir 2011, 27, 6565-6573.
[3] Dong, H.; Carr, W. W.; Bucknall, D. G. Temporally-Resolved Inkjet Drop Impaction on Surfaces. AIChE. J. 2007, 53, 2606-2617.
[4] Mao, T.; Kuhn, D. C.; Tran, H. Spread and Rebound of Liquid Droplets upon Impact on Flat Surfaces. AIChE. J. 1997, 43, 2169-2179.
[5] Bolleddula, D.; Berchielli, A.; Aliseda, A. Impact of a Heterogeneous Liquid Droplet on a Dry Surface: Application to the pharmaceutical industry. Adv. Colloid. Interf. Sci. 2010, 159, 144-159.
[6] Marengo, M.; Antonini, C.; Roisman, I. V.; Tropea, C. Drop Collisions with Simple and Complex Surfaces. Curr. Op. Colloid. Interf. Sci., 2011, 16, 292-302.
[7] Sikalo, S.; Marengo, M.; Tropea, C.; Ganic, E. N. Analysis of Impact of Droplet on Horizontal Surface. Exp. Therm. Fluid. Sci. 2002, 25, 530-510.
[8] Stoebe, T.; Lin, Z.; Hill, R. M.; Ward, M. D.; Davis, H. T. Surfactant-Enhanced Spreading. Langmuir 1996, 12, 337-344.
[9] Rein, M. Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces. Fluid. Dyn. Res. 1993, 12, 61-93.
[10] Tsai, P.; Pachecho, S.; Pirat, C.; Lefferts, L.; Lohse, D. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir 2009, 25, 12293–12298.
[11] Zhang, Z.; Xue, J. P.; Christopher, D. M.; Gang, L.X. Experimental Investigation of Spray Cooling on Micro-, Nano- and Hybrid-Structured Surfaces. Intern. J. Heat. Mass. Trans. 2015, 80, 26-37.
[12] Labergue, A.; Gradeck, M.; Lemoine, F.. Comparative Study of The Cooling of a Hot Temperature Surface using Sprays and Liquid Jets. Intern. J. Heat. Mass. Trans. 2015, 81, 889-900.
[13] Cheng, G.; Li, G.; Xue, H.; Chen, S.; Bryers, J. D.; Jiang, S. Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 2009, 30, 5234-5240.
[14] Thevenot, P.; Hu, W.; Tang, L. Surface chemistry influence implant biocompatibility. Curr. Topics. Med. Chem. 2008, 8, 270-280.
[15] Johnson, R. A.; Borhan, A. Pressure-Driven Motion of Surfactant-Laden Drops Through Cylindrical Capillaries: Effect of Surfactant Solubility. J. Colloid Interf. Sci. 2003, 261, 529-541.
[16] Go, S.; Han, M.; Ahn, Y. Formation of Nanoporous Polycarbonate Surfaces and Their Chemical Modification for Superhydrophobicity. Bull. Korean Chem. Soc. 2012, 33, 3899-3902.
[17] Wu, L.; Baghdachi, J. Functional Polymer Coating: Principles, Methods, and Applications. Willey Series on Polymer Engineering and Technology. 2015.
[18] Sundaram, H. S.; Han, X.; Nowinski, A. K.; Brault, N.; D.; Li, Y.; Ella-Menye, J-R.; Amoaka, K. A.; Cook, K. E.; Marek, P.; Senecal, K.; Jiang, S. Achieving One-Step Surface Coating of Highly Hydrophilic Poly(Carboxybetaine Methacrylate) Polymers on Hydrophobic and Hydrophilic Surfaces. Adv. Mater. Interf. 2014, 1, 1-8.
[19] Wikipedia. 2015 [cited 2016 20th January].
[20] Anonim. Polycarbonate. 2014 [cited 2016 14th January]; Available from : http://www.extatico.es/extaticodoc/policarbonato.pdf
[21] Ullman. Encycopledia of Industrial Chemistry (4th edition). Wiley, New York, 1972.
[22] Othmer, K. Encycopledia of Chemical Technology (4th edition). Wiley, New York, 1996.
[23] De Gennes, P. G.; Brochard-Wyart, F.; Quere, D. Capillarity and Wetting Phenomena, Drops, Bubbles, Pearls, Waves. Springer 2004.
[24] Yuan, Y.; Lee, T. R. Contact Angle and Wetting Properties. Surf. Sc. Tech. 2013, 51, 3-34.
[25] Schram, L. L., Stasiuk, E. N., & Marangoni, D. G. (2003). Surfactants and Their Applications. Annual Reports on the Progress of Chemistry , 3-48.
[26] Myers, D. Surfaces, Interfaces, and Colloids: Principles and Applications (2nd Edition). John Wiley & Sons, New York. 1999.
[27] Lin, S. Y.; McKeigue, K.; Maldarelli, C. Diffusion-Controlled Surfactant Adsorption Studied by Pendant Drop Digitization. J. AIChE. 1990, 36, 1785-1795.
[28] Arashiro, E. Y.; Demarquette, N. R. Use of the Pendant Drop Method to Measure Interfacial Tension between Molten Polymers. Mater. Res. 1999, 2, 23-32.
[29] Bonn, D.; Eggers, J.; Indekeu, J.; Meunir, J.; Rolley, E. Wetting And Spreading. Rev. Modern. Phys.2009, 81, 740-793.
[30] Eastoe, J.; Dalton, J. S. Dynamic surface tension and adsorption mechanisms of surfactants at the air-water interface. Adv. Colloid. Interf. Sci. 2000, 85, 103-144.
[31] Inc., K. Surface Tension. 2014 [cited 2015 13th January]; Available from: http://www.kibron.com/surface-tension.
[32] Crooks, R.; White, J. C.; Boger, D. V. The Role of Dynamic Surface Tension and Elasticity on The Dynamics of Drop Impact. Chem. Eng. Sci. 2001, 56, 5575-5592.
[33] An, S. M.; Lee, S. Y. Observation of The Spreading and Receding Behavior of a Shear-Thinning Liquid Drop Impacting on Dry Solid Surfaces. Exp. Therm. Fluid. Sci. 2012, 37, 37-45.
[34] Mo, S. A.; Lee, S. Y. Maximum Spreading of a Shear-Thinning Liquid Drop Impacting on Dry Solid Surfaces. Exp. Therm. Fluid. Sci. 2012, 38, 140-148.
[35] Andrade, R.; Skurtys, O.; Osorio, F. Experimental Study of Drop Impacts and Spreading on Epicarps: Effect of Fluid Properties. J. Food. Eng. 2012, 109, 430-437.
[36] Rioboo, R., Marengo, M., Tropea, C. Time evolution of liquid drop impact onto solid, dry surface. Exp. Fluid. 2002, 33, 112-124.
[37] Walker, J. Boiling and the Leidenfrost Effect. Cleveland State University.
[38] Forsberg, P. S. H.; Priest, C.; Brinkmann, M.; Sedev, R.; Ralston, J. Contact Line Pinning on Microstructured Surfaces for Liquids in the Wenzel State. Langmuir 2010, 26, 860-865.
[39] Fujimoto, H.; Shiotani, Y.; Tong, A. Y.; Hama, T.; & Takuda, H. Three-Dimensional Numerical Analysis of The Deformation Behavior of Droplets Impinging onto a Solid Substrate. Int. J. Multiphase Flow, 2007, 33, 317-332.
[40] Mourougou-Candoni, N. Influence of Dynamic Surface Tension on the Spreading of Surfactant Solution Droplets Impacting onto a Low-Surface-Energy Solid Substrate. J. Colloid. Interf. Sci. ,1997, 192, 129-141.
[41] Zhang, X., & Basaran, O. A. Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface. J. Colloid. Interf. Sci. 1997, 187, 166-178.
[42] Cooper-White, J.J.; Crooks, R.C.; D.V. Boger. A drop impact study of worm-like viscoelastic surfactant solutions. Colloids. Surf. A. 2002, 210, 105-123.
[43] Gatne, K. P., Jog, M. A.; Manglik, R.M. Surfactant-Induced Modification of Low Weber Number Droplet Impact Dynamics. Langmuir 2009, 25, 8122-8130.
[44] Pasandideh-Fard, M. Capillary effects during droplet impact on a solid surface. Phys. Fluids, 1995, 8, 650-670.
[45] Aytouna, M.; Bartolo, D.; Gerard, W. E. Impact dynamics of surfactant laden drops: dynamic surface tension effects. Exp. Fluids 2010, 48, 49-57.
[46] Hu, Y. T.; Lips, A. Estimating Surfactant Surface Coverage and Decomposing its Effect on Drop Deformation. Phys. Rev. Letters 2003, 91, 044501-1-044501-4.
[47] Cossali, G. E.; Marengo, M.; Santini, M. Secondary atomization produced by single drop vertical impact onto heated surfaces. Exp. Therm. Fluid Sci. 2005, 29, 937-946.
[48] Moita, A. S.; Moreira, A. L. N. (). Drop impacts onto cold and heated rigid surfaces: Morphological comparisons, disintegration limits and secondary atomization. Int. J. Heat. Fluid. Flow. 2006, 28, 735-752.
[49] Pasandideh-Fard, M.; Aziz, S. D.; Mostaghimi, J. Cooling effectiveness of a water drop impinging on a hot surface. Int. J. Heat. Fluid. Flow. 2001, 22, 201-210.
[50] Strotos, G.; Nikolopoulos, N.; Nikas, K. S.; Moustris, K. Cooling effectiveness of droplets at low Weber numbers: Effect of temperature. Int. J. Therm. Sci. 2013, 72, 60-72.
[51] Nikolopoulos, N., Theodorakakos, A., Bergeles, G. A numerical investigation of the evaporation process of a liquid droplet impinging onto a hot substrate. Int. J. Heat. Mass. Trans. 2007, 50, 303-319.
[52] De Genes, P. G. Wetting :Statics and Dynamics. Rev. Modern. Phys. 1985, 57, 827-861.
[53] Pittoni, P.G.; Tsao, H. K.; Hung, Y. L.; Huang, J. W.; Lin, S. Y. Impingement Dynamics of Water Drop Onto Four Graphite Morphologies : Fom Triple Line recoil to Pinning. J. Colloid. Interf. Sci. 2014, 417, 256-263.
[54] National Center for Biotechnology Information. PubChem Compound Database; CID=3423265, https://pubchem.ncbi.nlm.nih.gov/compound/3423265 (accessed Jan. 25, 2016).
[55] Laboratory, Adsorption Kinetics of Sodium Dodecyl Sulphate.

無法下載圖示 全文公開日期 2021/02/17 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE