簡易檢索 / 詳目顯示

研究生: 陳芝育
Chih-Yu Chen
論文名稱: Cu元素添加對於Sn-Bi銲料及其界面反應之研究
The effect of Cu additive on Sn-Bi solder and its interface reaction
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
李紹先
Shao-xian Li
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 73
中文關鍵詞: 電子封裝錫鉍低溫銲料析出強化界面反應介金屬化合物時效熱處理
外文關鍵詞: electronic packaging, tin-bismuth low temperature solder, precipitation strengthening, interfacial reaction, intermetallic compound, aging
相關次數: 點閱:222下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,先進電子封裝技術以疊構晶片的方式生產高階電子產品,同時為了降低銲接溫度產生之問題,進而發展出以Sn-Bi合金系統為主流的低溫銲料。然而電子產品在長期使用下,於高於室溫之環境中,亦會使低熔點合金產生相變化行為,因此Sn-Bi合金雖具有良好前景,但由於Sn-Bi之間不互溶,導致在元件和基板之銲接界面處有Bi析出之狀況,從而增加銲接點斷裂的風險。
本研究中將添加Cu元素於Sn-Bi合金,利用真空熔煉法製備Sn-(40-x)Bi-xCu合金塊材,x分別為0、0.5、2.5、5、15、20,針對其晶體結構、微觀結構及機械性質之變化探討,接著將此合金系統導入銲接製程,觀察在不同迴銲及時效熱處理條件下,銲接接點之界面反應行為。
首先在Sn-Bi合金中,由於Sn與Bi彼此不互溶,經XRD分析結果為獨立Sn、Bi相峰值;在微觀結構上則以層狀結構散佈。接著隨著不同Cu含量加入後,於XRD結果指出於在Cu含量0.5 wt%添加時,繞射角度30°開始出現Cu6Sn5相峰值,意謂少量之Cu添加就能夠促進Cu-Sn化合物生成,並且以條狀散佈於Sn-Bi合金之中,本身作為異質成核點,促進Bi之高成核密度,成核成長的過程中彼此競爭,進而縮小Bi之尺寸;另外透過Cu-Sn化合物生成而有析出強化之效果,Sn-40Bi由平均硬度為24.93 HV,當Cu含量上升至20 wt%時,合金整體硬度上升至63.13 HV,有助於提升合金之機械性質。
在經過時效熱處理後,探討界面處之介金屬化合物(Intermetallic Compound, IMC)成長與抑制Bi於界面處分佈之表現。日前業界之IMC厚度標準以1~5 µm為宜,因此以含0.5 wt% Cu以下之銲料落於此範圍內,另外界面處富Bi相的分佈,在經時效處理後有大幅成長的趨勢,含2.5 wt% Cu以內之銲料其Bi面積佔比小於Sn-Bi銲料;綜合以上兩者表現來說,以0.5 wt% Cu添加於Sn-Bi銲料,儘管Cu元素的添加使得IMC的厚度隨之上升,但是透過Cu-Sn化合物析出在Sn-Bi銲料與Cu基板連接之界面,減少Bi於界面析出,進而降低Bi之粗大化引起的界面脆化,並保持界面之完整性。


In recent years, advanced electronic packaging technology produces high-end electronic products by stacking chips. In order to reduce the problem of high soldering temperature, Sn-Bi alloy system have been developed. However, the long-term use of electronic products above room temperature will cause low melting point alloys occur phase change. Although Sn-Bi alloys have good prospects, the precipitation of Bi at the interface will increase the risk of solder joint fracture.
In this study, Cu element will be added into Sn-Bi alloy. First, the Sn-(40-x)Bi-xCu alloy bulk was prepared by vacuum melting method. The changes of alloy crystal structure, microstructure and metallurgical diffusion behavior would be discussed. Then, the alloy system was introduced into the soldering process, and the interface reaction behavior of the solder joints was observed after different reflow and aging conditions.
Sn and Bi are immiscible with each other. XRD analysis results show the peaks of independent Sn phase and Bi phase. We observed the layered structure in microstructures. With adding Cu content of 0.5wt%,XRD results indicated the Cu6Sn5 phase peaks at the diffraction angle of 30°, which means that a small amount of Cu addition can promote the formation of Cu-Sn compounds. These compounds are in the shape of strips and act as a heterogeneous nucleation point, which promotes the high nucleation density of Bi . High nucleation density of Bi competes with each other in the process of grain growth, which reduces the size of Bi. Due to the precipitation strengthening of Cu-Sn compounds ,the average hardness of alloy increases from 24.93 HV to 63.13 HV when the Cu content increases to 20 wt% .
After aging, the growth of IMC at the interface and the inhibition of Bi distribution at the interface would be discussed. In terms of IMC thickness performance of the industry standard is from 1 to 5 µm. The solder containing less than 0.5 wt% Cu meets the industry standard. The distribution of Bi-rich phase at the interface has a tendency to grow significantly, and the growth rate of Bi containing 2.5 wt% Cu is lower than the Sn-Bi solder. Therefore, adding 0.5 wt% Cu into Sn-Bi solder can reduce the interface embrittlement and maintain the integrity of the interface.

目錄 摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 VII 表目錄 X 第1章 前言 1 第2章 文獻回顧 3 2.1 電子封裝 3 2.1.1 電子封裝的發展背景 3 2.1.2 球矩陣列封裝 6 2.2 無鉛銲接 10 2.2.1 無鉛銲料系統的發展 10 2.2.2 錫鉍低溫無鉛銲料 11 2.2.3 無鉛銲料銲接製程 13 2.3 錫鉍低溫銲料與銅基材之界面反應 15 2.3.1 鉍含量對錫鉍銲料與銅基材之界面反應影響 18 2.3.2 錫鉍銲料添加銅對於機械性質的影響 21 2.4 文獻回顧與研究動機總結 24 第3章 實驗方法 25 3.1 實驗流程 25 3.1.1 合金試片製備 26 3.1.2 錫球迴銲銲接之參數 26 3.2 實驗分析樣品製備步驟 28 3.2.1 合金材料製備 28 3.2.2 合金微結構及物理性質分析分析之樣品製備 29 3.2.3 錫球迴銲銲接樣品製備 29 3.3實驗分析儀器 31 3.3.1 X射線繞射分析儀 31 3.3.2 差示掃描量熱分析儀 32 3.3.3 場發射掃描式電子顯微鏡 33 3.3.4 能量分散光譜儀 34 3.3.5 維式硬度試驗 35 第4章結果與討論 36 4.1 錫鉍銅合金之分析 36 4.1.1 錫鉍銅合金之成份組成分析 36 4.1.2 錫鉍銅合金之微觀結構分析 38 4.1.3 不同銅含量對合金微觀結構的影響 40 4.1.4 不同銅含量對合金元素分佈的影響 41 4.1.5 不同銅含量對合金硬度的影響 43 4.2 錫鉍銅合金迴銲分析 44 4.2.1 錫鉍銅合金之DSC分析 44 4.2.2 不同迴銲條件之界面反應 45 4.2.3 不同迴銲條件對鉍於界面分佈影響 48 4.3 錫鉍銅合金熱處理時效分析 50 4.3.1 不同時效熱處理條件之界面反應 50 4.3.2 不同時效熱處理對鉍於界面分佈的影響 53 第5章 結論與未來展望 55 5.1 結論 55 5.2 未來展望 56 參考文獻 57 圖目錄 圖 2.1電子封裝的四個階層示意圖 4 圖 2.2封裝技術的演進 5 圖 2.3 BGA銲接製程示意圖 6 圖 2.4以PBGA方式連接晶片的 BGA 封裝 7 圖 2.5以FC-PBGA方式連接晶片的 BGA 封裝 7 圖 2.6銲接過程中因材料之CTE不同導致PCB翹曲 8 圖 2.7 迴銲過程中FC-BGA因PCB翹曲引起的缺陷 9 圖 2.8 Sn-Bi 二元相圖 12 圖 2.9 不同Bi含量之Sn-Bi合金微觀結構(a)Sn-5Bi (b)Sn-15Bi (c)Sn-30Bi (d)Sn-58Bi 13 圖 2.10 SAC305的銲接製程 14 圖 2.11 Cu-Bi 二元相圖 15 圖 2.12 Sn-Cu 二元相圖 16 圖 2.13 Cu/Sn-58Bi/Cu在迴銲後其橫截面之微觀結構 (a)銲接接點 (b)此為(a)中的頂部界面區域 (c)此為(a)中的底部界面區域 17 圖 2.14 Sn-58Bi/Cu之銲接界面微觀結構 (a)迴銲60秒後 (b)120hr (c)240hr (d)312hr,其中(b-d)為經過時效熱處理 18 圖 2.15 Sn-58Bi/Cu銲接界面發生 (a)脆性斷裂行為 (b)疲勞破壞行為 18 圖 2.16 Sn-Bi銲料的微觀結構變化 (a)固溶體Sn-Bi (b)亞共晶Sn-Bi 19 圖 2.17不同Bi含量之Sn-Bi銲料在經135°C等溫時效處理240 hr後的界面微觀結構示意圖 (a)Sn-5Bi (b)Sn-15Bi (c)Sn-30Bi (d)Sn-45Bi (e)Sn-58Bi 20 圖 2.18不同Bi含量之Sn-Bi銲料之界面行為示意圖 (a) Sn-5Bi/Sn-15Bi (b)Sn-30Bi/Sn-40Bi (c) Sn-58Bi 21 圖 2.19不同Bi含量之Sn-Bi銲料接點斷裂面表面形貌 (a) Sn-15Bi (b)Sn-58Bi 21 圖 2.20 Smile view計算之Sn晶枝尺寸和Bi粒徑 23 圖2.21 Sn-Bi合金隨著Cu添加之硬度變化 23 圖 3.1 實驗流程圖 25 圖 3.2 NSMD開孔1mm之BGA基板示意圖 26 圖 3.3 真空封管與真空熔煉示意圖 29 圖 3.4 鑲埋完成之合金樣品 29 圖 3.5 迴銲銲接步驟示意圖 30 圖 3.6 加熱爐之示意圖 30 圖 3.7鑲埋完成之錫球迴銲銲接樣品 (a)上視圖(b)側視圖 30 圖 3.8 X射線繞射分析儀 31 圖 3.9差示掃描量熱分析儀 32 圖 3.10場發射掃描式電子顯微鏡 33 圖 3.11 X射線生成示意圖 34 圖 3.12能量分散光譜儀 34 圖 3.13維克硬度試驗機 35 圖 4.1 Sn-Bi-Cu合金樣品之XRD分析結果 37 圖 4.2 Sn-Bi-Cu合金樣品於25°~ 50°區間之XRD分析結果 37 圖 4.3 Sn-Bi-Cu合金樣品的微觀組織 (a)C00 (b)C05 (c)C25 (d)C50 (e)C150 (f)C200 38 圖 4.4 Sn-Bi-Cu合金樣品之成份分佈 (a)C00 (b)C50 (c)C150 39 圖 4.5 Sn-Bi-Cu合金樣品析出物之微觀結構 (a)C00 (b)C05 (c)C25 (d)C50 (e)C150 (f)C200 41 圖 4.6 為圖4.5 之Cu-Sn析出相佔比 41 圖 4.7合金樣品C00之元素成份組成 42 圖 4.8合金樣品C05之元素成份組成 42 圖 4.9合金樣品C50之元素成份組成 43 圖 4.10 Sn-Bi-Cu合金經維克硬度試驗分析結果 43 圖 4.11 Sn-Bi-Cu合金樣品DSC分析 (a)C05之二次吸放熱曲線 (b)第一次吸放熱曲線 45 圖 4.12 不同Cu含量之Sn-Bi-Cu銲錫球在190℃分別經過60、180、300秒銲接後之截面圖 (a-c)C00 (d-f)C05 (g-i)C25 (j-l)C50 (m-o)C150 47 圖 4.13 IMC厚度計算方式示意圖 48 圖 4.14 Sn-Bi-Cu銲錫球經不同迴銲條件下生成IMC厚度關係圖 48 圖 4.15 Bi面積佔比計算方式示意圖 49 圖 4.16 Sn-Bi-Cu銲錫球經迴銲時間60秒銲接後,界面Bi分佈之截面圖 (a)C00 (b)C05 (c)C25 (d)C50 (e)C150 49 圖 4.17 Sn-Bi-Cu銲錫球在130℃分別經過48、120小時時效熱處理後之截面圖 (a-b)C00 (c-d)C05 (e-f)C25 (g-h)C50 52 圖 4.18 Sn-Bi-Cu銲錫球經不同時效熱處理條件下生成IMC厚度關係圖 53 圖 4.19 Sn-Bi-Cu銲錫球在經過不同時效熱處理後Bi於界面分佈之截面圖 54 圖 4.20 Sn-Bi-Cu銲錫球經時效熱處理後Bi於界面之面積佔比 54 表目錄 表 2.1幾種典型的無鉛銲料及其熔點與共晶成分 11 表 3.1錫球組成樣品編號 27 表 3.2錫球銲接參數 (a)在190℃下以不同溫度進行迴銲銲接實驗 (b)持溫130℃下進行不同時間的時效熱處理實驗 28 表 3.3 DSC工作參數 32 表 4.1 如圖4.3之Sn-Bi-Cu合金EDS成份組成分析 39

[1] Q. Zhang, H. Zou, and Z.-F. Zhang, "Improving tensile and fatigue properties of Sn–58Bi/Cu solder joints through alloying substrate," Journal of materials research, vol. 25, no. 2, pp. 303-314, 2010.
[2] H. Takao, A. Yamada, and H. Hasegawa, "Mechanical properties and solder joint reliability of low-melting Sn-Bi-Cu lead free solder alloy," R&D Review of Toyota CRDL, vol. 39, no. 2, pp. 457-462, 2004.
[3] W. R. Osório, L. C. Peixoto, L. R. Garcia, N. Mangelinck-Noël, and A. Garcia, "Microstructure and mechanical properties of Sn–Bi, Sn–Ag and Sn–Zn lead-free solder alloys," Journal of Alloys and Compounds, vol. 572, pp. 97-106, 2013.
[4] M. Şahin, T. Şensoy, and E. Çadırlı, "Microstructural evolution and mechanical properties of Sn-Bi-Cu ternary eutectic alloy produced by directional solidification," Materials Research, vol. 21, 2018.
[5] P. ZHU, D. D. LU, Z. ZHANG, and C. WONG, "Electronic Packaging Technology," in ENCYCLOPEDIA OF PACKAGING MATERIALS, PROCESSES, AND MECHANICS: Set 1: Interconnect and Wafer Bonding Technology Volume 1: Flip-Chip and Underfill Materials and Technology: World Scientific, 2020, pp. 1-20.
[6] H. Ardebili, J. Zhang, and M. G. Pecht, Encapsulation technologies for electronic applications. William Andrew, 2018.
[7] R. Prasad, Surface mount technology: principles and practice. Springer Science & Business Media, 2013.
[8] B. Guenin, "Update on JEDEC Thermal Standards," Electronics Cooling, vol. 18, 2015.
[9] C. Nash, "The basics of soldering," SMT, vol. 23, no. 4, p. 14, 2009.
[10] G. Harman, Wire Bonding in Microelectronics 3 Edition by George Harman: Wire Bonding in Microelectronics. Digital Designs, 2010.
[11] J. J. Licari and D. W. Swanson, Adhesives technology for electronic applications: materials, processing, reliability. William Andrew, 2011.
[12] K. Sweatman, "Optimising Solder Paste Volume for Low Temperature Reflow of BGA Packages."
[13] C.-T. Ko and K.-N. Chen, "Low temperature bonding technology for 3D integration," Microelectronics reliability, vol. 52, no. 2, pp. 302-311, 2012.
[14] M.-C. Liao, P.-S. Huang, Y.-H. Lin, M.-Y. Tsai, C.-Y. Huang, and T.-C. Huang, "Measurements of thermally-induced curvatures and warpages of printed circuit board during a solder reflow process using strain gauges," Applied Sciences, vol. 7, no. 7, p. 739, 2017.
[15] M.-S. Kang, Y.-J. Jeon, D.-S. Kim, and Y.-E. Shin, "Degradation characteristics and Ni3Sn4 IMC growth by a thermal shock test in SAC305 solder joints of MLCCs applied in automotive electronics," International Journal of Precision Engineering and Manufacturing, vol. 17, no. 4, pp. 445-452, 2016.
[16] M. Fazal, N. Liyana, S. Rubaiee, and A. Anas, "A critical review on performance, microstructure and corrosion resistance of Pb-free solders," Measurement, vol. 134, pp. 897-907, 2019.
[17] R. Tian, C. Hang, Y. Tian, and J. Xu, "Brittle fracture of Sn-37Pb solder joints induced by enhanced intermetallic compound growth under extreme temperature changes," Journal of Materials Processing Technology, vol. 268, pp. 1-9, 2019.
[18] E. Lillie, P. Sandborn, and D. Humphrey, "Assessing the value of a lead-free solder control plan using cost-based FMEA," Microelectronics Reliability, vol. 55, no. 6, pp. 969-979, 2015.
[19] S. Xu, A. H. Habib, A. D. Pickel, and M. E. McHenry, "Magnetic nanoparticle-based solder composites for electronic packaging applications," Progress in materials science, vol. 67, pp. 95-160, 2015.
[20] K. Zeng and K.-N. Tu, "Six cases of reliability study of Pb-free solder joints in electronic packaging technology," Materials science and engineering: R: reports, vol. 38, no. 2, pp. 55-105, 2002.
[21] C. Wu, D. Q. Yu, C. Law, and L. Wang, "Properties of lead-free solder alloys with rare earth element additions," Materials Science and Engineering: R: Reports, vol. 44, no. 1, pp. 1-44, 2004.
[22] W. R. Osório, D. R. Leiva, L. C. Peixoto, L. R. Garcia, and A. Garcia, "Mechanical properties of Sn–Ag lead-free solder alloys based on the dendritic array and Ag3Sn morphology," Journal of Alloys and Compounds, vol. 562, pp. 194-204, 2013.
[23] M. McCormack, S. Jin, G. Kammlott, and H. Chen, "New Pb‐free solder alloy with superior mechanical properties," Applied Physics Letters, vol. 63, no. 1, pp. 15-17, 1993.
[24] B. L. Silva, A. Garcia, and J. E. Spinelli, "Wetting behavior of Sn–Ag–Cu and Sn–Bi–X alloys: insights into factors affecting cooling rate," Journal of Materials Research and Technology, vol. 8, no. 1, pp. 1581-1586, 2019.
[25] F. Wang, H. Chen, Y. Huang, L. Liu, and Z. Zhang, "Recent progress on the development of Sn–Bi based low-temperature Pb-free solders," Journal of Materials Science: Materials in Electronics, vol. 30, no. 4, pp. 3222-3243, 2019.
[26] Q. Zhai, S. Guan, and Q. Shang, "Alloy thermo-mechanism: theory and application," ed: Metallurgy Industry Press, Beijing, 1999.
[27] P. Liu and J. Shang, "Interfacial embrittlement by bismuth segregation in copper/tin–bismuth Pb-free solder interconnect," Journal of Materials Research, vol. 16, no. 6, pp. 1651-1659, 2001.
[28] H. Zou, Q. Zhang, and Z. Zhang, "Transition of Bi embrittlement of SnBi/Cu joint couples with reflow temperature," Journal of Materials Research, vol. 26, no. 3, pp. 449-454, 2011.
[29] F. Wang, A. Luktuke, and N. Chawla, "Microstructural Coarsening and Mechanical Properties of Eutectic Sn-58Bi Solder Joint During Aging," Journal of Electronic Materials, vol. 50, no. 12, pp. 6607-6614, 2021.
[30] C. Lea, "A scientific guide to surface mount technology," Electrochem. Pub, vol. 424, 1988.
[31] J. H. Lau, C. Wong, N.-C. Lee, and S.-W. R. Lee, Electronics manufacturing: with lead-free, halogen-free, and conductive-adhesive materials. McGraw-Hill Education, 2003.
[32] 許琳, "金屬間化合物(IMC)對銲點質量影響之淺析," in 2018 中國高端SMT學術會議論文集, 2018.
[33] S. Nai, J. Wei, and M. Gupta, "Interfacial intermetallic growth and shear strength of lead-free composite solder joints," Journal of Alloys and Compounds, vol. 473, no. 1-2, pp. 100-106, 2009.
[34] J. A. Carbajo Deán, "Thermodynamic description of the binary cu-bi system," 2016.
[35] O. Teppo, J. Niemelä, and P. Taskinen, "An assessment of the thermodynamic properties and phase diagram of the system Bi-Cu," Thermochimica acta, vol. 173, pp. 137-150, 1990.
[36] J.-H. Shim, C.-S. Oh, B.-J. Lee, and D. Lee, "Thermodynamic assessment of the Cu-Sn system," International Journal of Materials Research, vol. 87, no. 3, pp. 205-212, 1996.
[37] J. Huang et al., "Growth mechanisms of intermetallic compounds and Bi-rich layer in ball grid array structure Cu/Sn-58Bi/Cu solder joints during solid–solid and liquid–solid electromigration," Journal of Materials Science: Materials in Electronics, pp. 1-17, 2022.
[38] K.-N. Tu and R. Thompson, "Kinetics of interfacial reaction in bimetallic Cu-Sn thin films," Acta Metallurgica, vol. 30, no. 5, pp. 947-952, 1982.
[39] F. Wang, Y. Huang, Z. Zhang, and C. Yan, "Interfacial reaction and mechanical properties of Sn-Bi solder joints," Materials, vol. 10, no. 8, p. 920, 2017.
[40] B. L. Silva, A. Garcia, and J. E. Spinelli, "Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu, Ag) solder alloys," Materials Characterization, vol. 114, pp. 30-42, 2016.
[41] J. Shen, Y. Pu, H. Yin, D. Luo, and J. Chen, "Effects of minor Cu and Zn additions on the thermal, microstructure and tensile properties of Sn–Bi-based solder alloys," Journal of Alloys and Compounds, vol. 614, pp. 63-70, 2014.
[42] P.-F. Yang, Y.-S. Lai, S.-R. Jian, and J. Chen, "Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Measured by Nanoindentation," in 2007 8th International Conference on Electronic Packaging Technology, 2007: IEEE, pp. 1-5.
[43] S. Alam, N. Jindal, and N. Naithani, "Effect of addition of Cu on the properties of eutectic Sn-Bi solder alloy," Mater. Sci. Poland, vol. 37, no. 2, pp. 212-224, 2019.
[44] X. Hu, K. Li, and Z. Min, "Microstructure evolution and mechanical properties of Sn0. 7Cu0. 7Bi lead-free solders produced by directional solidification," Journal of alloys and compounds, vol. 566, pp. 239-245, 2013.
[45] J. I. Goldstein, D. E. Newbury, J. R. Michael, N. W. Ritchie, J. H. J. Scott, and D. C. Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
[46] W. B. Pearson, A handbook of lattice spacings and structures of metals and alloys: International series of monographs on metal physics and physical metallurgy, Vol. 4. Elsevier, 2013.
[47] J. Goldstein and J. Morris, "Microstructural development of eutectic Bi-Sn and eutectic In-Sn during high temperature deformation," Journal of electronic materials, vol. 23, no. 5, pp. 477-486, 1994.
[48] F.-q. Zu, Z. Bing, X.-F. Li, Y. Xun, Y.-P. Chen, and Q.-q. Sun, "Effect of liquid-liquid structure transition on solidification of Sn-Bi alloys," Transactions of Nonferrous Metals Society of China, vol. 17, no. 5, pp. 893-897, 2007.
[49] N. Mookam, P. Tunthawiroon, and K. Kanlayasiri, "Effects of copper content in Sn-based solder on the intermetallic phase formation and growth during soldering," in IOP Conference Series: Materials Science and Engineering, 2018, vol. 361, no. 1: IOP Publishing, p. 012008.
[50] C. Ding, J. Wang, T. Liu, H. Qin, D. Yang, and G. Zhang, "The Mechanical Properties and Elastic Anisotropy of η′-Cu6Sn5 and Cu3Sn Intermetallic Compounds," Crystals, vol. 11, no. 12, p. 1562, 2021.
[51] K. Okamoto, K. Nomura, S. Doi, T. Akamatsu, S. Sakuyama, and K. Uenishi, "Effects of Sb and Zn addition on impact resistance improvement of Sn-Bi solder joints," in International Symposium on Microelectronics, 2013, vol. 2013, no. 1: International Microelectronics Assembly and Packaging Society, pp. 000104-000108.

QR CODE