簡易檢索 / 詳目顯示

研究生: 林旻嫻
Min-Hsien Lin
論文名稱: 碳氮化硼與超奈米鑽石於矽奈米線複合結構之超級電容特性研究
Hybrid Nanostructures of Boron Carbon Nitrides with Ultra-nanocrystalline Diamond on Silicon Nanowires for Supercapacitor Properties
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 張立
周賢鎧
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 339
中文關鍵詞: 矽奈米線超奈米鑽石碳氮化硼超級電容器
外文關鍵詞: Silicon nanowires, Phosphorus, Ultra-nanocrystalline diamond, Boron Carbon Nitride, Supercapacitor
相關次數: 點閱:453下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討碳氮化硼複合超奈米鑽石於不同結構之矽奈米線上作為超級電容器之應用,並探討退火後處理對於此結構之影響。內文將分為三個部分。第一部分分別探討超奈米鑽石、碳氮化硼及碳氮化硼複合超奈米鑽石於矽基板上之電化學感測,並探討以溫度800℃之退火後處理對此三種結構之影響,本部分較佳之參數為(BCN(1:2)-NUNCD_(10 min)/Si)N8其比電容值為10.007(F/g)。
第二部分將第一部分之矽基板改成矽奈米線,探討3D結構對電化學感測之影響,並探討以溫度800℃之退火後處理對此三種結構之影響: Type I: NUNCD/SiNWs、Type II: BCN/SiNWs、Type III: BCN-NUNCD/SiNWs;接著為了提升其電化學感測特性,將矽奈米線先與超奈米鑽石做結合,再跟碳氮化硼複合超奈米鑽石做結合形成BCN-NUNCD/NUNCD/SiNWs,並探討以溫度800℃之退火後處理對此結構之影響。在此部分發現利用矽奈米線結構,皆可以提升超奈米鑽石、碳氮化硼及碳氮化硼複合超奈米鑽石作為超級電容器之重量比電容值,而使用矽奈米線複合奈米鑽石結構可以更加有效的提升重量比電容值,並利用氮氣退火後處理,可發現電容值從18.93提升至123.91(F/g),其充放電循環穩定性可增加473.91%。表明此種BCN-NUNCD/NUNCD/SiNWs新型複合結構具有優異之循環穩定性。
第三部分則在探討矽奈米線做磷摻雜後之分析,並將第二部分較好之結果套用於矽奈米線做磷摻雜之基板上探討其超級電容器之特性。在此部分發現通過磷摻雜後皆會使其循環穩定性增加,本部分較佳之參數為(BCN(1:1)-NUNCD_(7.5 min)/NUNCD_(12.5 min)/PSG_(975℃ 30 min )-SiNWs_(20 min))N8其比電容值為33.193(F/g),其充放電循環穩定性可增加450%。
關鍵字:矽奈米線、磷、超奈米鑽石、碳氮化硼、超級電容器


This study is divided into three main parts. In the first part, we combined two materials: nanocrystalline diamond (NUNCD) and Boron Carbon Nitride (BCN) on silicon-Based, the optimal parameter in this section is (BCN(1:2)-NUNCD_(10 min)/Si)N8, which exhibits a specific capacitance of 10.007 (F/g).
The second part , we combined two materials: nanocrystalline diamond (NUNCD) and Boron Carbon Nitride (BCN) on silicon nanowires ,forming four types of novel composite structures: (i) NUNCD/SiNWs, (ii) BCN/SiNWs, (iii)BCN-NUNCD/SiNWs and(iv)BCN-NUNCD/NUNCD/SiNWs for supercapacitors. This study found that the silicon nanowires and ultra-nanodiamonds combined silicon nanowire can effectively improve the capacitance value of ultra-nanodiamonds, boron Carbon Nitride and ultra-nanodiamonds combined boron Carbon Nitride. After annealing the ultra-nanodiamonds combined boron Carbon Nitride on the ultra-nanodiamonds combined silicon nanowire substrate with nitrogen for 800 C, it can be found that the capacitance value is increased from 18.93 to 123.91 (F/g), and the charge-discharge cycle stability is improved 473.91%.
The third part, we found that the phosphorus doping can enhances cycle stability across all cases. The optimal parameter in this section is (BCN(1:1)-NUNCD_(7.5 min)/NUNCD_(12.5 min)/PSG_(975℃ 30 min )-SiNWs_(20 min))N8, which exhibits a specific capacitance of 33.193(F/g), and the charge-discharge cycle stability is improved 450%.

Keywords: Silicon nanowires, Phosphorus, Ultra-nanocrystalline diamond, Boron Carbon Nitride, Supercapacitor

中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 XVI 表目錄 XXXI 第一章 緒論 1.1 前言 1 1.2 研究動機 2 第二章 文獻探討 2.1矽奈米線材料(Silicon nanowires)之特性簡介 3 2.1.1矽奈米線材料概述 3 2.1.2矽奈米線材料成長機制 3 2.2奈米鑽石材料(Nanocrystalline diamond )之特性簡介 4 2.2.1奈米鑽石材料概述 4 2.2.2結晶鑽石之尺寸分類 5 2.2.3超奈米鑽石成長機制 7 2.3碳氮化硼( Boron Carbon Nitride , BCN )材料之特性 9 2.3.1碳氮化硼概述 9 2.3.2碳氮化硼之型態與結構 10 2.4 超級電容器之種類與機制 12 2.4.1超級電容器(Supercapacitor, SC)概述 12 2.4.2電雙層電容(Electrical Double Layer Capacitor, EDLC) 14 第三章 實驗方法 3.1 實驗設計與流程 17 3.2 製備之材料介紹 21 3.2.1基板 21 3.2.2氣體 21 3.2.3藥品與溶液 22 3.3 基板之清洗 23 3.4 微波電漿化學氣相沉積法成長超奈米鑽石 24 3.5 微波電漿化學氣相沉積法成長碳氮化硼 26 3.6 管式高溫爐(小台)摻雜磷之矽奈米線 28 3.7 管式高溫爐(大台)之退火後處理 29 3.8 儀器設備與材料分析方法 31 3.8.1場發射掃描式電子顯微鏡(Scanning Electron Microscope, FE-SEM) 31 3.8.2拉曼光譜儀(Raman Spectrum) 33 3.8.3 X射線繞射儀(X-ray Diffraction, XRD) 34 3.8.4 X光電子能譜儀 (X-ray photfoelectron spectroscopy, XPS) 36 3.8.4電化學分析儀(Electrochemical Workstation) 38 第四章 碳氮化硼與摻氮之超奈米鑽石於矽基板之超級電容特性分析 4.1 摻氮之超奈米鑽石於矽基板(NUNCD/Si)之實驗介紹 39 4.1.1 摻氮之超奈米鑽石於矽基板(NUNCD/Si)之特性分析 39 4.1.1.a NUNCD/Si 實驗流程圖 40 4.1.1.b NUNCD/Si表面型態分析 41 4.1.1.c NUNCD/Si 拉曼光譜儀分析 434.1.1.d NUNCD/Si 循環伏安法(Cyclic voltammetry, CV)分析 45 4.1.1.e NUNCD/Si 恆電流充放電(Galvanostatic charge/discharge, GCD) 分析 47 4.1.2 氮氣退火後處理摻氮之超奈米鑽石於矽基板(NUNCD/Si)N8之特性分析 50 4.1.2.a (NUNCD/Si)N8 實驗流程圖 50 4.1.2.b (NUNCD/Si)N8表面型態分析 51 4.1.2.c (NUNCD/Si)N8 拉曼光譜儀分析 53 4.1.2.d (NUNCD/Si)N8 循環伏安法(Cyclic voltammetry, CV)分析 55 4.1.2.e (NUNCD/Si)N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 56 4.2 碳氮化硼於矽基板(BCN/Si)之實驗介紹 59 4.2.1 碳氮化硼於矽基板(BCN/Si)之特性分析 60 4.2.1.a BCN/Si 實驗流程圖 60 4.2.1.b BCN/Si 表面型態分析 61 4.2.1.c BCN/Si 拉曼光譜儀分析 64 4.2.1.d BCN/Si X-ray(XRD)繞射儀分析 66 4.2.1.e BCN/Si XPS繞射儀分析 68 4.2.1.f BCN/Si 循環伏安法(Cyclic voltammetry, CV)分析 70 4.2.1.g BCN/Si 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 72 4.2.2 氮氣退火後處理碳氮化硼於矽基板(BCN/Si) N8之特性分析 74 4.2.2.a (BCN/Si) N8 實驗流程圖 74 4.2.2.b (BCN/Si) N8 表面型態分析 75 4.2.2.c (BCN/Si) N8 拉曼光譜儀分析 77 4.2.2.d (BCN/Si)N8 X-ray(XRD)繞射儀分析 79 4.2.2.e (BCN/Si) N8 循環伏安法(Cyclic voltammetry, CV)分析 81 4.2.2.f (BCN/Si) N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 82 4.3 碳氮化硼複合摻氮之超奈米鑽石於矽基板(BCN-NUNCD/Si)之實驗介紹 85 4.3.1 碳氮化硼複合摻氮之超奈米鑽石於矽基板(BCN-NUNCD/Si)之分析 86 4.3.1.a BCN-NUNCD/Si 實驗流程圖 86 4.3.1.b BCN-NUNCD/Si 表面型態分析 87 4.3.1.c BCN-NUNCD/Si 拉曼光譜儀分析 98 4.3.1.d BCN-NUNCD /Si X-ray(XRD)繞射儀分析 103 4.3.1.e BCN-NUNCD/Si 循環伏安法(Cyclic voltammetry, CV)分析 107 4.3.1.f BCN-NUNCD/Si 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 110 4.3.2 氮氣退火後處理碳氮化硼複合摻氮之超奈米鑽石於矽基板 (BCN-NUNCD/Si) N8之分析 115 4.3.2.a (BCN-NUNCD/Si) N8 實驗流程圖 115 4.3.2.b (BCN-NUNCD/Si) N8 表面型態分析 116 4.3.2.c (BCN-NUNCD/Si) N8 拉曼光譜儀分析 122 4.3.2.d (BCN-NUNCD/Si)N8 X-ray(XRD)繞射儀分析 126 4.3.2.e (BCN-NUNCD/Si)N8 XPS繞射儀分析 130 4.3.2.f (BCN-NUNCD/Si) N8 循環伏安法(Cyclic voltammetry, CV)分析 132 4.3.2.g (BCN-NUNCD/Si) N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 135 4.4 結論 141 第五章 碳氮化硼/摻氮之超奈米鑽石複合結構於矽奈米線之超級電容特性分析 5.1 矽奈米線結構(SiNWs)之特性分析 145 5.1.1 SiNWs 實驗流程圖 146 5.1.2 SiNWs 表面型態分析 147 5.1.3 SiNWs循環伏安法(Cyclic voltammetry, CV)分析 149 5.1.4 SiNWs恆電流充放電(Galvanostatic charge/discharge, GCD)分析 151 5.2 摻氮之超奈米鑽石於矽奈米線(NUNCD/ SiNWs)之實驗介紹 153 5.2.1 摻氮之超奈米鑽石於矽奈米線(NUNCD/ SiNWs)之特性分析 154 5.2.1.a NUNCD/SiNWs 實驗流程圖 154 5.2.1.b NUNCD/SiNWs 表面型態分析 155 5.2.1.c NUNCD/SiNWs 拉曼光譜儀分析 156 5.2.1.d NUNCD/SiNWs 循環伏安法(Cyclic voltammetry, CV)分析 158 5.2.1.e NUNCD/SiNWs 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 160 5.2.2 氮氣退火後處理摻氮之超奈米鑽石於矽奈米線 (NUNCD/SiNWs) N8之特性分析 162 5.2.2.a (NUNCD/SiNWs) N8 實驗流程圖 162 5.2.2.b (NUNCD/SiNWs) N8 表面型態分析 163 5.5.2.c (NUNCD/SiNWs) N8 拉曼光譜儀分析 164 5.2.2.d (NUNCD/SiNWs) N8 循環伏安法(Cyclic voltammetry, CV)分析 166 5.2.2.e (NUNCD/SiNWs) N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 167 5.3 碳氮化硼於矽奈米線(BCN/ SiNWs)之實驗介紹 170 5.3.1 碳氮化硼於矽奈米線(BCN/ SiNWs)之特性分析 171 5.3.1.a BCN/ SiNWs 實驗流程圖 171 5.3.1.b BCN/ SiNWs 表面型態分析 172 5.3.1.c BCN/ SiNWs 拉曼光譜儀分析 173 5.3.1.d BCN/SiNWs X-ray(XRD)繞射儀分析 175 5.3.1.e BCN/ SiNWs 循環伏安法(Cyclic voltammetry, CV)分析 177 5.3.1.f BCN/ SiNWs 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 179 5.3.2 氮氣退火後處理碳氮化硼於矽奈米線(BCN/SiNWs) N8之特性分析 181 5.3.2.a (BCN/SiNWs) N8 實驗流程圖 181 5.3.2.b (BCN/SiNWs) N8 表面型態分析 182 5.3.2.c (BCN/SiNWs) N8 拉曼光譜儀分析 183 5.3.2.d (BCN/SiNWs)N8 X-ray(XRD)繞射儀分析 185 5.3.2.e (BCN/SiNWs)N8 XPS繞射儀分析 187 5.3.2.f (BCN/SiNWs) N8 循環伏安法(Cyclic voltammetry, CV)分析 189 5.3.2.g (BCN/SiNWs) N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 190 5.4 碳氮化硼複合摻氮之超奈米鑽石於矽奈米線(BCN-NUNCD/SiNWs)之實驗 介紹 193 5.4.1 碳氮化硼複合摻氮之超奈米鑽石於矽奈米線(BCN-NUNCD/SiNWs)之特性分析 194 5.4.1.a BCN-NUNCD/SiNWs 實驗流程圖 194 5.4.1.b BCN-NUNCD/SiNWs 表面型態分析 195 5.4.1.c BCN-NUNCD/SiNWs 拉曼光譜儀分析 198 5.4.1.d BCN-NUNCD/SiNWs X-ray(XRD)繞射儀分析 202 5.4.1.e BCN-NUNCD/SiNWs 循環伏安法(Cyclic voltammetry, CV)分析 204 5.4.1.f BCN-NUNCD/SiNWs 恆電流充放電(Galvanostatic charge/discharge,GCD)分析 207 5.4.2 氮氣退火後處理碳氮化硼複合摻氮之超奈米鑽石於矽奈米線 (BCN-NUNCD/SiNWs) N8之特性分析 211 5.4.2.a (BCN-NUNCD/SiNWs) N8 實驗流程圖 211 5.4.2.b (BCN-NUNCD/SiNWs) N8 表面型態分析 212 5.4.2.c (BCN-NUNCD/SiNWs) N8 拉曼光譜儀分析 213 5.4.2.d (BCN-NUNCD/SiNWs)N8 X-ray(XRD)繞射儀分析 215 5.4.2.e (BCN-NUNCD/SiNWs) N8 循環伏安法(Cyclic voltammetry, CV)分析 217 5.4.2.f (BCN-NUNCD/SiNWs) N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 218 5.5 碳氮化硼複合摻氮之超奈米鑽石成長於摻氮之超奈米鑽石複合於矽奈米線(BCN-NUNCD/NUNCD/SiNWs)之實驗介紹 221 5.5.1 碳氮化硼複合摻氮之超奈米鑽石成長於摻氮之超奈米鑽石複合於矽奈米線(BCN-NUNCD/NUNCD/SiNWs)之特性分析 222 5.5.1.a BCN-NUNCD/NUNCD/SiNWs 實驗流程圖 222 5.5.1.b BCN-NUNCD/NUNCD/SiNWs 表面型態分析 223 5.5.1.c BCN-NUNCD/NUNCD/SiNWs拉曼光譜儀分析 225 5.5.1.d BCN-NUNCD/NUNCD/SiNWs X-ray(XRD)繞射儀分析 228 5.5.1.e BCN-NUNCD/NUNCD/SiNWs 循環伏安法(Cyclic voltammetry, CV)分析 230 5.5.1.f BCN-NUNCD/NUNCD/SiNWs 恆電流充放電(Galvanostatic charge/discharge,GCD)分析 233 5.5.2 氮氣退火後處理碳氮化硼複合摻氮之超奈米鑽石成長於摻氮之超奈米鑽石複合於矽奈米線 (BCN-NUNCD/NUNCD/SiNWs)N8之特性分析 237 5.5.2.a (BCN-NUNCD/NUNCD/SiNWs)N8 實驗流程圖 237 5.5.2.b (BCN-NUNCD/NUNCD/SiNWs)N8 表面型態分析 238 5.5.2.c (BCN-NUNCD/NUNCD/SiNWs)N8 拉曼光譜儀分析 239 5.5.2.d (BCN-NUNCD/NUNCD/SiNWs)N8 X-ray(XRD)繞射儀分析 241 5.5.2.e (BCN-NUNCD/NUNCD/SiNWs)N8 XPS繞射儀分析 243 5.5.2.f (BCN-NUNCD/NUNCD/SiNWs)N8 循環伏安法(Cyclic voltammetry, CV)分析 245 5.5.2.g (BCN-NUNCD/NUNCD/SiNWs)N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 246 5.6 結論 249   第六章 碳氮化硼/摻氮之超奈米鑽石複合結構於磷摻雜矽奈米線之超級電容特性分析 6.1磷摻雜矽奈米線結構(PSG-SiNWs)之特性分析 255 6.1.1 PSG-SiNWs 實驗流程圖 256 6.1.2 PSG-SiNWs 表面型態分析 257 6.1.3 PSG-SiNWs 循環伏安法(Cyclic voltammetry, CV)分析 259 6.1.4 PSG-SiNWs 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 260 6.2 摻氮之超奈米鑽石於磷摻雜矽奈米線結構(NUNCD/PSG-SiNWs)之實驗介紹 262 6.2.1 摻氮之超奈米鑽石於磷摻雜矽奈米線結構(NUNCD/PSG-SiNWs)之特性分析 263 6.2.1.a NUNCD/PSG-SiNWs 實驗流程圖 263 6.2.1.b NUNCD/PSG-SiNWs 表面型態分析 264 6.2.1.c NUNCD/PSG-SiNWs 拉曼光譜儀分析 265 6.2.1.d NUNCD/PSG-SiNWs 循環伏安法(Cyclic voltammetry, CV)分析 267 6.2.1.e NUNCD/PSG-SiNWs 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 268 6.2.2 氮氣退火後處理摻氮之超奈米鑽石於磷摻雜矽奈米線結構(NUNCD/PSG-SiNWs) N8之特性分析 270 6.2.2.a (NUNCD/PSG-SiNWs) N8 實驗流程圖 270 6.2.2.b (NUNCD/PSG-SiNWs) N8 表面型態分析 271 6.2.2.c (NUNCD/PSG-SiNWs) N8 拉曼光譜儀分析 272 6.2.2.d (NUNCD/PSG-SiNWs) N8 循環伏安法(Cyclic voltammetry, CV)分析 274 6.2.2.e (NUNCD/PSG-SiNWs) N8 恆電流充放電(Galvanostatic charge/discharge, GCD)分析 275 6.3 碳氮化硼於磷摻雜矽奈米線結構(BCN/PSG-SiNWs)之實驗介紹 278 6.3.1 碳氮化硼於磷摻雜矽奈米線結構(BCN/PSG-SiNWs)之特性分析 279 6.3.1.a BCN/PSG-SiNWs 實驗流程圖 279 6.3.1.b BCN/PSG-SiNWs 表面型態分析 280 6.3.1.c BCN/PSG-SiNWs 拉曼光譜儀分析 281 6.3.1.d BCN/PSG-SiNWs X-ray(XRD)繞射儀分析 282 6.3.1.e BCN/PSG-SiNWs循環伏安法及恆電流充放電(CV & GCD)分析 283 6.3.1.f BCN/PSG-SiNWs & BCN/ SiNWs循環穩定性比較 284 6.3.2 氮氣退火後處理碳氮化硼於磷摻雜矽奈米線結構(BCN/PSG-SiNWs) N8之特性分析 285 6.3.2.a (BCN/PSG-SiNWs) N8 實驗流程圖 285 6.3.2.b (BCN/PSG-SiNWs) N8 表面型態分析 286 6.3.2.c (BCN/PSG-SiNWs) N8 拉曼光譜儀分析 287 6.3.2.d (BCN/PSG-SiNWs)N8 X-ray(XRD)繞射儀分析 288 6.3.2.e (BCN/PSG-SiNWs)N8循環伏安法及恆電流充放電(CV & GCD)分析 289 6.3.2.f (BCN/PSG-SiNWs)N8 & (BCN/SiNWs)N8循環穩定性比較 291 6.4 碳氮化硼複合摻氮之超奈米鑽石成長於磷摻雜矽奈米線結構(BCN-NUNCD /PSG-SiNWs)之實驗介紹 292 6.4.1 碳氮化硼複合摻氮之超奈米鑽石成長於磷摻雜矽奈米線結構 (BCN-NUNCD/PSG-SiNWs)之特性分析 293 6.4.1.a BCN-NUNCD/PSG-SiNWs 實驗流程圖 293 6.4.1.b BCN-NUNCD/PSG-SiNWs 表面型態分析 294 6.4.1.c BCN-NUNCD/PSG-SiNWs 拉曼光譜儀分析 295 6.4.1.d BCN-NUNCD/PSG-SiNWs X-ray(XRD)繞射儀分析 296 6.4.1.e BCN-NUNCD/PSG-SiNWs 循環伏安法及恆電流充放電(CV & GCD)分析 297 6.4.1.f BCN-NUNCD/PSG-SiNWs &BCN-NUNCD/SiNWs循環穩定性比 較 298 6.4.2 氮氣退火後處理碳氮化硼複合摻氮之超奈米鑽石成長於磷摻雜矽奈米線結構(BCN-NUNCD/PSG-SiNWs)N8之特性分析 299 6.4.2.a (BCN-NUNCD/PSG-SiNWs)N8 實驗流程圖 299 6.4.2.b (BCN-NUNCD/PSG-SiNWs)N8 表面型態分析 300 6.4.2.c (BCN-NUNCD/PSG-SiNWs)N8 拉曼光譜儀分析 301 6.4.2.d (BCN/NUNCD/PSG-SiNWs) N8 X-ray(XRD)繞射儀分析 302 6.4.2.e (BCN/NUNCD/PSG-SiNWs) N8 循環伏安法及恆電流充放電(CV & GCD)分析 303 6.4.2.f (BCN-NUNCD/PSG-SiNWs &BCN-NUNCD/SiNWs)N8循環穩定 性比較 305 6.5 碳氮化硼複合摻氮之超奈米鑽石成長於摻氮之超奈米鑽石複合於磷摻雜矽 奈米線結構(BCN-NUNCD/NUNCD/PSG-SiNWs)之實驗介紹 306 6.5.1 碳氮化硼複合摻氮之超奈米鑽石成長於摻氮之超奈米鑽石複合於磷摻雜矽奈米線結構(BCN-NUNCD/NUNCD/PSG-SiNWs)之特性分析 307 6.5.1.a BCN-NUNCD/NUNCD/PSG-SiNWs 實驗流程圖 307 6.5.1.b BCN-NUNCD/NUNCD/PSG-SiNWs 表面型態分析 308 6.5.1.c BCN-NUNCD/NUNCD/PSG-SiNWs 拉曼光譜儀分析 309 6.5.1.d BCN-NUNCD/NUNCD/PSG-SiNWs X-ray(XRD)繞射儀分析 310 6.5.1.e BCN-NUNCD/NUNCD/PSG-SiNWs循環伏安法及恆電流充放電 (CV & GCD)分析 311 6.5.1.f BCN-NUNCD/NUNCD/PSG-SiNWs & BCN-NUNCD/NUNCD/SiNW循環穩定性比較 312 6.5.2 氮氣退火後處理碳氮化硼複合摻氮之超奈米鑽石成長於摻氮之超奈米鑽石複合於磷摻雜矽奈米線結構(BCN-NUNCD/NUNCD/PSG-SiNWs) N8之特性分析 313 6.5.2.a (BCN-NUNCD/NUNCD/PSG-SiNWs) N8 實驗流程圖 313 6.5.2.b (BCN-NUNCD/NUNCD/PSG-SiNWs) N8 表面型態分析 314 6.5.2.c (BCN-NUNCD/NUNCD/PSG-SiNWs) N8 拉曼光譜儀分析 315 6.5.2.d (BCN-NUNCD/NUNCD/PSG-SiNWs)N8 X-ray(XRD)繞射儀分析 316 6.5.2.e (BCN-NUNCD/NUNCD/PSG-SiNWs)N8循環伏安法及恆電流充放電(CV & GCD)分析 317 6.5.2.f (BCN-NUNCD/NUNCD/PSG-SiNWs)N8 & (BCN-NUNCD/NUNCD/ SiNWs)N8循環穩定性比較 319 6.6 結論 320 第七章 結論與未來展望 7.1 結論 322 7.2 未來展望 326 附錄 參考文獻

[1].S.H.Wang, T.Wang, Corrosion-Resistant Functional Diamond Coatings for Reliable Interfacing of Liquid Metals with Solid Metals, ACS Applied Materials & Interfaces, 36 (2020), 40891-40900.
https://pubs.acs.org/doi/abs/10.1021/acsami.0c09428
[2].S.T. Lee, Z. Lin, CVD diamond films: nucleation and growth, Materials Science and Engineering: R: Reports, 25 (1999), 123-154.
https://www.sciencedirect.com/science/article/pii/S0927796X99000030
[3].Kui-Qing Peng, Xin Wanga, Silicon nanowires for advanced energy conversion and storage, nanotoday, 8 (2013), 75-97.
https://www.sciencedirect.com/science/article/pii/S1748013212001466
[4].Huang Ruia, Fan Xing, Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes, Applied Physics Letters, 95 (2013), 133119.
https://www.scopus.com/record/display.uri?eid=2-s2.0-70349662178&origin=inward&txGid=62a87fc5bf6a68066be7622bfb4a957c
[5].Kelzenberg Michael D, Boettcher Shannon W, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nature Materials, 9 (2010), 239 – 244.
https://www.scopus.com/record/display.uri?eid=2-s2.0-77249164255&origin=inward&txGid=6a88c1526b81bc00e595cb038b75430a
[6].R. B. Weisman, New Frontiers in Nanocarbons, Electrochem. Soc. Interface, 22 (2013), 49.
https://doi.org/10.1149/2.F02133if
[7].H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985), 162-163.
https://doi.org/10.1038/318162a0
[8].Patrick T.Moseleya, David A.J.Rand, Understanding the functions of carbon in the negative active-mass of the lead–acid battery: A review of progress, Journal of Energy Storage, 19 (2018), 272-290.
https://www.sciencedirect.com/science/article/pii/S2352152X18303955
[9].S.J. Kim, B.K Jul, Y.H. Lee, B.S. Park, Emission characteristic of diamond-tip FEA fabricated by transfer mold technique, IEEE, 526 (1996), 526-529.
https://doi.org/10.1109/IVMC.1996.601879
[10].Seiichiro Matsumoto, Yoichiro Sato, Mutsukazu Kamo and Nobuo Setaka, Vapor deposition of diamond particles from methane, Japanese Journal of Applied Physics, 21 (1982), L183.
https://doi.org/10.1143/JJAP.21.L183
[11].Arora, S. and V. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness, Thin Solid Films, 515(4) (2006), 1963-1969.
https://doi.org/10.1016/j.tsf.2006.08.002
[12].Ichiro Watanabe, Takashi Matsushita Takashi Matsushita and Koujyu Sasahara Koujyu Sasahara, Low-Temperature Synthesis of Diamond Films in Thermoassisted RF Plasma Chemical Vapor Deposition, Japanese Journal of Applied Physics, 31 (1992), 1428.
https://doi.org/10.1143/JJAP.31.1428
[13].O.A. Williams, M. Nesladek, M. Daenen, S. Michaelson, A. Hoffman, E. Osawa, K. Haenen, R.B. Jackman, Growth, electronic properties and applications of nanodiamond, Diamond and Related Materials, 17(7–10) (2008), 1080-1088.
https://doi.org/10.1016/j.diamond.2008.01.103
[14].Butler, J.E. and Sumant, A.V., The CVD of Nanodiamond Materials, Chemical Vapor Deposition, 14 (2008), 145-160.
https://doi.org/10.1002/cvde.200700037
[15].Shraddha Dhanraj Nehate, Sreeram Sundaresh, Hydrogenation of Boron Carbon Nitride Thin Films for Low-k Dielectric Applications, ECS Journal of Solid State Science and Technology, 10 (2021), 093001.
https://iopscience.iop.org/article/10.1149/2162-8777/ac210d
[16].Rongting Wu, Adrian Gozar, Large-area borophene sheets on sacrificial Cu(111) films promoted by recrystallization from subsurface boron, npj Quantum Materials volume , 4 (2019), 40.
https://www.nature.com/articles/s41535-019-0181-0
[17].Siby Thomas, Sang Uck Lee, Atomistic insights into the anisotropic mechanical properties and role of ripples on the thermal expansion of h-BCN monolayers, RSC Advances, 9 (2019), 1238-1246.
https://pubs.rsc.org/en/content/articlehtml/2019/ra/c8ra08076c
[18].Shayan Angizi, Md Ali Akbar, Review—Two-Dimensional Boron Carbon Nitride: A Comprehensive Review, ECS Journal of Solid State Science and Technology, 9 (2020), 083004.
https://iopscience.iop.org/article/10.1149/2162-8777/abb8ef
[19].Evgeni S. Penev, Somnath Bhowmick, Polymorphism of Two-Dimensional Boron, American Chemical Society, 5 (2012), 2441-2445. https://pubs.acs.org/doi/full/10.1021/nl3004754
[20].Walter R. L. Lambrecht, Benjamin Segall, Anomalous band-gap behavior and phase stability of c-BN–diamond alloys, PHYSICAL REVIEW B, 47 (1993), 9289.
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.47.9289
[21].Md. Abdul Mannan, Yuji Baba, Hexagonal Nano-Crystalline BCN Films Grown on Si (100) Substrate Studied by X-Ray Absorption Spectroscopy, Materials Sciences and Applications, 4 (2013), 9
https://www.scirp.org/html/3-7700988_31618.htm.
[22].D.Y. Guo, P.G. Li, Z.W. Chen, Z.P. Wu, W.H. Tang, Ultra-wide bandgap semiconductor of β-Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector, Acta Phys. Sin., 68(7) (2019), 078501.
https://doi.org/10.7498/aps.68.20181845
[23].S. Abolhosseini, A. Heshmati, J. Altmann, A review of renewable energy supply and energy efficiency technologies, Cog. Eng. 8145 (2014).
https://dx.doi.org/10.2139/ssrn.2432429.
[24].Wang S, Wei T, Qi Z., Supercapacitor energy storage technology and its application in renewable energy power generation system. In: Goswami D.Y., Zhao Y. (eds) Proceedings of ISES World Congress 2007 (Vol. I–Vol. V). Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-75997-3_566
[25].W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, et al., Recent advancements in supercapacitor technology, Nano Energy, 52 (2018), 441-473.
https://doi.org/10.1016/j.nanoen.2018.08.013
[26].J. Xie, P. Yang, Y. Wang, T. Qi, Y. Lei, C.M. Li, Puzzles and confusions in supercapacitor and battery: theory and solutions, J Power Sources, 401 (2018), 213-223.
https://doi.org/10.1016/j.jpowsour.2018.08.090
[27].Binoy K. Saikia, Santhi Maria Benoy, Mousumi Bora, Joyshil Tamuly, Mayank Pandey, Dhurbajyoti Bhattacharya, A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials, Fuel, 282 (2020), 118796.
https://doi.org/10.1016/j.fuel.2020.118796.
[28].N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Mater Today, 18 (5) (2015), 252-264.
https://doi.org/10.1016/j.mattod.2014.10.040
[29].Yanfang Xu, Weibang Lu, Guangbiao Xu, Tsu-Wei Chou, Structural supercapacitor composites: A review, Composites Science and Technology, 204 (2021), 108636.
https://doi.org/10.1016/j.compscitech.2020.108636
[30].N.P. Shetti, S. Dias, K.R. Reddy, Nanostructured organic and inorganic materials for Li-ion batteries: a review, Mater Sci Semicond Process, 104 (2019), 104684.
https://doi.org/10.1016/j.mssp.2019.104684
[31].R.E. Ruther, C.N. Sun, A. Holliday, S. Cheng, F.M. Delnick, T.A. Zawodzinski Jr., et al., Stable electrolyte for high voltage electrochemical double-layer capacitors, J Electrochem Soc (2017), A277-A283.
https://doi.org/10.1149/2.0951702jes
[32].Y. Luo, Q. Zhang, W. Hong, Z. Xiao, H. Bai, A High-performance electrochemical supercapacitor based on polyaniline/reduced graphene oxide electrode and copper (ii) ion active electrolyte, Phys. Chem. Chem. Phys., 20 (1) (2017), 131-136.
https://doi.org/10.1039/c7cp07156f
[33].G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 41 (2012), 797-828.
https://doi.org/10.1039/C1CS15060J
[34].A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Review on supercapacitors: technologies and materials, Renew. Sustain. Energy Rev., 58 (2016), 1189-1206.
https://doi.org/10.1016/j.rser.2015.12.249
[35].K. Poonam, A. Sharma, S.K. Arora, Tripathi, review of supercapacitors: materials and devices, J. Energy Stor., 21 (2019), 801-825.
https://doi.org/10.1016/j.est.2019.01.01
[36].R.L. Spyker, R.M. Nelms, Classical equivalent circuit parameters for a double-layer capacitor, IEEE Trans Aerosp Electron Syst, 36 (3) (2000), 829-836.
https://doi.org/10.1109/7.869502
[37].Y. Show, Research article on electric double-layer capacitor fabricated with addition of carbon nanotube to polarizable electrode, J Nanomater (2012), 1-8.
https://doi.org/10.1155/2012/929343
[38].M. Yassine, D. Fabris, Performance of commercially available supercapacitors, Energies, 10 (9) (2017), 1340-1352.
https://doi.org/10.3390/en10091340
[39].Yong S, Fabrication and characterisation of fabric supercapacitor [Doctoral Thesis], University of Southampton (2016) p.160.
https://eprints.soton.ac.uk/417382/
[40].Kim BK, Sy S, Yu A, Zhang J., Electrochemical supercapacitors for energy storage and conversion, Handbook of Clean Energy Systems, Wiley Publications (2015), 1-25.
https://doi.org/10.1002/9781118991978.hces112.
[41].B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).
https://link.springer.com/book/10.1007/978-1-4757-3058-6
[42].V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci., 7 (2014), 1597-1664.
https://doi.org/10.1039/C3EE44164D
[43].C. Zhao, W. Zheng, A review for aqueous electrochemical supercapacitors, J. Front. Energy Res., 3(23) (2015), 1-8.
https://doi.org/10.3389/fenrg.2015.00023
[44].A. C. Ferrari and J. Robertson, Origin of the 1150-cmÀ1 Raman mode in nanocrystalline diamond, PHYSICAL REVIEW B, 63, (2001),121405
https://doi.org/10.1103/PhysRevB.63.121405
[45].W. C. Ke, C. Y. Chiang, T. G. Kim, Y. C. Lin, C. Y. Liao, K. J. Chang, J. C. Lin, Nitrogen doped ultrananocrystalline diamond conductive layer grown on InGaN-based light-emitting diodes using nanopattern enhanced nucleation, Applied Surface Science, 2021, 546, 149052.
https://doi.org/10.1016/j.apsusc.2021.149052
[46].W. Zhang, L. Guan, B. Wang, H. Liu, J. Wang, X. Hong, J. Long, S. Wei, X. Xiong, Y. Xiong, Directly tuning the surface morphologies and electron pathway of graphite/diamond composite films for enhanced electron field emission, Journal of Alloys and Compounds, 2022, 928, 167243.
https://doi.org/10.1016/j.jallcom.2022.167243
[47].Y. F. Tzeng, Y. C. Lee, C. Y. Lee, H. T. Chiu, I. N. Lin, Electron field emission properties on UNCD coated Si-nanowires, Diamond & Related Materials, 2008, 17, 753-757.
https://doi.org/10.1016/j.diamond.2007.10.014
[48].Q. Xia, H. Yang, M. Wang, M. Yang, Q. Guo, L. Wan, H. Xia, Y. Yu, High Energy and High Power Lithium-Ion Capacitors Based on Boron and Nitrogen Dual-Doped 3D Carbon Nanofibers as Both Cathode and Anode, Adv. Energy Mater., 2017, 7, 1701336.
https://doi.org/10.1002/aenm.201701336
[49].A. Bashir, M. Maqbool, R. Lv, A. Usman, W. Aftab, H. Niu, L. Kang, S. L. Bai, Engineering of Interfacial Interactions Among BN And CNT Hybrid Towards Higher Heat Conduction Within TPU Composites, Composites: Part A, 2023, 167, 107428.
https://doi.org/10.1016/j.compositesa.2023.107428
[50].X. Yuan, Y. Zhang, Y. Yan, B. Wei, K. Qiao, B. Zhu, X. Cai, T.-W. Chou, Tunable synthesis of biomass-based hierarchical porous carbon scaffold@ MnO2 nanohybrids for asymmetric supercapacitor, Chem. Eng. J., 393 (2020), 121214.
https://doi.org/10.1016/j.cej.2019.03.090
[51].Dongping Chen, Facile fabrication of nanoporous BCN with excellent charge/discharge cycle stability for high-performance supercapacitors, Materials Letters, 246 (2019),28-31.
https://www.sciencedirect.com/science/article/pii/S0167577X19304008
[52].Shuilin Wu, Yatu Chen, Tianpeng Jiao, Jun Zhou, Junye Cheng, Bin Liu, Shaoran Yang, Kaili Zhang,Wenjun Zhang, An Aqueous Zn-Ion Hybrid Supercapacitor with High Energy Density and Ultrastability up to 80,000 Cycles, Advanced Energy Materials, 9(47) (2019), 1902915.
https://doi.org/10.1002/aenm.201902915
[53].S. Veeresh, H. Ganesha, Y.S. Nagaraju, H. Vijeth, H. Devendrappa, Activated carbon incorporated graphene oxide with SnO2 and TiO2-Zn nanocomposite for supercapacitor application, Journal of Alloys and Compounds, 2023, 952, 169907.
https://doi.org/10.1016/j.jallcom.2023.169907
[54].Panchatcharam, P (Panchatcharam, Praveena) ; Vengidusamy, N (Vengidusamy, Narayanan) ; Arumainathan, S (Arumainathan, Stephen), Facile in situ synthesis of flexible porous polycarbazole/BCN nanocomposite as a novel electrode material for high-performance supercapacitor, Journal of Materials Science: Materials in Electronics , 33, 2022, 23580-23598.
https://doi.org/10.1007/s10854-022-09117-5
[55].Chen, DP; Huang, YZ ; Hu, XL; Li, RK; Qian, YJ ; Li, DX, Green Synthesis of Boron Carbonitride with High Capacitance, Materials, 11(3), 2018, 387.
https://doi.org/10.3390/ma11030387
[56].Li, HP; Zhu, SW; Zhang, M; Wu, PW; Pang, JY ; Zhu, WS ; Jiang, W; Li, HM , Tuning the Chemical Hardness of Boron Nitride Nanosheets by Doping Carbon for Enhanced Adsorption Capacity, Acs Omega, 2(9), 2017, 5385-5394.
https://doi.org/10.1021/acsomega.7b00795
[57].Wang, HHTian, L; Huang, Z; Liang, F; Guan, KK; Jia, QL ; Zhang, HJ; Zhang, SW,Molten salt synthesis of carbon-doped boron nitride nanosheets with enhanced adsorption performance, Nanotechnology, 31(50), 2020, 505606
https://doi.org/10.1088/1361-6528/abb6a4
[58].Indrajit M.Patil, 2D/3D heterostructure of h-BN/reduced graphite oxide as a remarkable electrode Material for supercapacitor, Journal of Power Sources, 479 (2020), 229092.
https://www.sciencedirect.com/science/article/pii/S0378775320313872
[59].Matsoso, BJ ; Ranganathan, K ; Mutuma, BK; Lerotholi, T; Jones, G ; Coville, NJ, Synthesis and characterization of boron carbon oxynitride films with tunable composition using methane, boric acid and ammonia, New Journal of Chemistry, 41(17), 2017, 9497-9504.
https://doi.org/10.1039/C7NJ01886J
[60].Lu, Q; An, J ; Duan, YD ; Luo, QZ; Shang, YY ; Liu, QN ; Tang, YF ; Huang, JY; Tang, CC; Yin, R ; Wang, DS, Highly Efficient and Selective Carbon-Doped BN Photocatalyst Derived from a Homogeneous Precursor Reconfiguration, Catalysts, 12(5), 2022, 555.
https://doi.org/10.3390/catal12050555
[61].Giusto, P ; Cruz, D ; Heil, T ; Tarakina, N ; Patrini, M ; Antonietti, M, Chemical Vapor Deposition of Highly Conjugated, Transparent Boron Carbon Nitride Thin Films, Advanced Science, 8(17), 2021, 2101602.
https://doi.org/10.1002/advs.202101602
[62].Huang, BR; Yang, YK; Lin, TC ; Yang, WL, A simple and low-cost technique for silicon nanowire arrays based solar cells, Solar Energy Materials and Solar Cells, 98, 2012, 357-362.
https://doi.org/10.1016/j.solmat.2011.11.031
[63].M. Hassan, M.A. Gondal, E. Cevik, T.F. Qahtan, A. Bozkurt, M.A. Dastageer, High performance pliable supercapacitor fabricated using activated carbon nanospheres intercalated into boron nitride nanoplates by pulsed laser ablation technique, Arabian Journal of Chemistry, 2020, 13, 6696-6707.
https://doi.org/10.1016/j.arabjc.2020.06.024
[64].J. Devarajan, P. Arumugam, G. Govindasamy, Synthesis of B-C-N nanotubes by CVD method and their electrochemical performance towards supercapacitors, Materials Today: Proceedings, 2023, Available online 20 January.
https://doi.org/10.1016/j.matpr.2023.01.039
[65].Huang, BR; Lin, YC, The Studies of Boron Carbon Nitrides with Ultra-nanocrystalline Diamonds on Silicon-Based Hybrid Nanostructures for Supercapacitor Properties. 2022
https://hdl.handle.net/11296/mm7qg4
[66].F. Gao, M.T. Wolfer, C.E. Nebel, Highly porous diamond foam as a thin-film micro supercapacitor material, Carbon, 80 (2014), 833-840.
https://doi.org/10.1016/j.carbon.2014.09.007
[67].X. Peng, W. Yuan, J. Zou, B. Wang, W. Hu, Y. Xiong, Nitrogen-incorporated ultrananocrystalline diamond/multilayer graphene composite carbon films: Synthesis and electrochemical performances, Electrochimica Acta, 2017, 257, 504-509.
https://doi.org/10.1038/srep04531
[68].ayi, A., Shveyd, A., Sue, AH. et al., Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes, Nature, 488 (2012), 485-489.
https://doi.org/10.1038/nature11395

無法下載圖示 全文公開日期 2025/10/23 (校內網路)
全文公開日期 2025/10/23 (校外網路)
全文公開日期 2025/10/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE