簡易檢索 / 詳目顯示

研究生: 簡大舜
Ta-Shun Chien
論文名稱: SUS 304L被覆Inconel 52M之機械性質研究
Mechanical Properties of Inconel 52M Clad on 304L Stainless Steel
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 朱瑾
Jinn P. Chu
蔡履文
L.W. Tsay
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 84
中文關鍵詞: 被覆
外文關鍵詞: clad
相關次數: 點閱:148下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

SUS304不銹鋼為目前核電廠管路最常使用之材料,惟在銲接修補過程,最常産生熱裂(hot cracking) 現象,為沃斯田鐵型不銹鋼被覆銲接過程最容易産生之問題。本研究針對低含碳量之SUS 304L不銹鋼,以GTAW進行表面IN 52M被覆,藉由不同被覆參數之選用,進行被覆層稀釋率分析,可調應變試驗裂紋敏感性量測,被覆界面層、部份融熔區、熱影響區及母材區之金相顯微組織觀察,電子顯微鏡被覆層表面狀態、析出物觀察及微硬度分析等。
研究結果顯示,被覆層最適參數為電流90A,被覆速度100 mm/min、送線速度400 mm/min,入熱量約810 J/mm及用氬氣為保護氣體,流量為15 L/min;SUS 304L不銹鋼界面層區金相組織為樹枝晶狀結構,而無明顯之熱影響區,δ-ferrite於母材部份熔融區成長;因多道次被覆,故下被覆層,在經過多次熱循環後,因再熱使得晶粒細化硬度提高;同時該被覆層界面硬度值為Hv210,較被覆材IN 52M硬度Hv149及SUS 304L硬度Hv190為高。在EDS成份分析中,當被覆材IN 52M累計被覆至第三層時,該層的化學成分已趨近於IN 52M素材,其硬度值亦隨被覆層增加而降低,惟仍較原素材為高。另外被覆層並無凝固熱裂紋及延性降低裂紋産生之發現。


SUS 304 stainless steel is the most popular pipe materials used in modern nuclear power plant. However, hot cracking problem is often encountered during the cladding of these types of austenite stainless steel. The study comprises the cladding of SUS 304L stainless steel with IN 52M materials by Gas Tungsten Arch Welding (GTAW). Variable cladding parameters, cladding dilution analysis and microstructure observations of SUS 304L stainless steel cladding with IN 52M have been investigated. The interface layer between SUS 304L stainless steel and cladding materials was dendrite structure without obvious HAZ occurred and δ-ferrite growth in fusion zone during the appropriate selection of cladding parameters with 90Amperes current, 100mm/min cladding speed, 400mm/min feed wire speed, 810J/mm heat input and Argon as an inert gas. According to multi-cladding process, repeated thermal cycle will resulted in the hardness of interface layer higher than both IN 52M cladding material and SUS 304L base metals. The EDS analysis shows the consecutive third layer cladding with similar chemical composition to IN 52M cladding materials and the third layer hardness decreases with increasing layers of cladding. Moreover, there is no hot cracking or fissures found in cladding layers.

摘  要 I Abstract II 誌  謝 III 目  錄 IV 圖 索 引 VI 表 索 引 IX 第一章 前言 1 第二章 文獻回顧 3 2.1不銹鋼 3 2.1.1不銹鋼簡介與分類 3 2.1.2各種元素對沃斯田鐵系不銹鋼性質的影響 5 2.1.3 SUS 304L不銹鋼 9 2.2沃斯田鐵不銹鋼銲接理論 11 2.2.1氬銲簡介 11 2.2.2 沃斯田鐵不銹鋼銲接特性 11 2.2.3 組成過冷理論與凝固模式 13 2.2.4 沃斯田鐵不銹鋼凝固行為 16 2.2.5 肥粒相組織對沃斯田鐵不銹鋼的影響 18 2.3異質金屬銲接 19 2.3.1 銲道與熱影響區 20 2.3.2 母材的選擇 22 2.3.3 銲材的選擇 22 2.3.4肥粒鐵數含量的量測 23 2.4可調應變試驗原理 25 2.5 銲道裂紋 26 2.5.1 凝固熱裂(Solidification Cracking) 28 2.5.2 液化熱裂(Liquation Cracking) 29 第三章 實驗流程與方法 32 3.1 實驗流程 32 3.2 實驗材料 33 3.3 被覆參數設計 34 3.4 被覆層稀釋率計算 36 3.5 可調應變試驗(裂紋敏感性試驗) 37 3.7 金相顯微組織觀察 40 3.8 電子顯微鏡觀察 42 3.9 微硬度試驗 43 第四章 實驗結果與討論 44 4.1被覆參數分析與選定 44 4.2可調應變試驗分析(裂紋敏感性試驗) 57 4.3被覆試片金相觀察 63 4.4 SEM觀察分析 70 4.4.1 EDS成份分析 70 4.4.2 SEM觀察 73 4.5微硬度試驗分析 78 第五章 結論 79 參考文獻 80

[1] 梁仲賢,「壓水式核反應器材料的腐蝕與防治對策」,核研季刊,第26 期,第8-12頁(1999)。
[2] Warren Bamford, John Hall, Bruce Newton, Greg Turley, “Environmental Degradation of Materials in Nuclear System-Water Reactors,” ed. By T. R. Allen et al., 13th Int. Conf., Toronto, Canada (2007)
[3] J. Lippold, “IN 52M Overlay Development for Surge Nozzle Weld Repairs”, 8th International EPRI Conference on Welding and Repair Technology for Power Plants, ed. By S. Findlan, Fort Myers, Florida, June 18-20(2008)
[4] 丸善,「金屬便覽(改訂四版)」,日本金屬學會(1984)。
[5] 鄭勝隆,「鎳基690合金與SUS 304L不銹鋼異種金屬銲接特性與微結構研究」,博士論文,國立成功大學,台南,第77-102頁(2003)。
[6] Alber A. Sadek, “Effect of new tungsten electrodes on hot cracking susceptibility”, Material Letters, 25, pp. 229-234(1995)
[7] AWS, Welding Handbook, 9th,Vol. 1, p. 360 (2001)
[8] S. D Kiser, et al. “Nickel Alloy Welding Requirements for Nuclear Service, ” in Focus on Nuclear Power Generation (2005)
[9] Savage,W. F., and Lundin, C. D., Weld. J., Vol. 44, p. 433 (1965)
[10] Robert E. Reed-Hill, Physical Metallurgy Principles, 3rd ed., CL-Engineering, p. 590(1994)
[11] R.W. Cahn, P. Haasen, E. J. Kramer, Materials Science and Technology A, Comprehensive Treatment, Vol 7, p. 615 (1991)
[12] 島田鐵也、山本章夫、阿部征三郎, “The Effect of Nitrogen Content on Material Properties of High Carbon Stainless Steel SUS 440A”, Vol 82, p. 49 (1996)
[13] Bungardt, K., Kunze, E., and Horn, E., “Investigation of the Structure of the Iron-Chromium-Carbon System,” Archiv fur das Eisenhwn, Vol 29, p. 193 (1958)
[14] 周漢標、廖德潭、洪文山,「沃斯田鐵不銹鋼之銲接特性及熱裂分析(上)」,機械月刊,第十八卷,第二期,第163頁 (1992)。
[15] 蔡政宏,「690 合金銲件之熱龜裂敏感性研究」,碩士論文,私立義守大學,高雄 (1997)。
[16] ASM, Metals Handbook, 10th Edition, Vol. 2 (1990)
[17] 機電工程金屬材料手冊,下冊,上海科學技術出版社 (1990)。
[18] Boiler and Pressure Vessel Code, Section II, Part D, ASME, New York (2007)
[19] Yamaguchi, T., M. Kato and T. Nokami, “Metallurgical characteristics of A5083-0 aluminum alloy welded by high energy density welding, ” Welding International 13(3), pp. 712-720(1999)
[20] Boiler and Pressure Vessel Code, Section II, Part C, ASME, New York (2007)
[21] Manning P. E., Duquette D. J., and Savage W. F., “Technical Note: The Effect of Retained Ferrite on Localized Corrosion in Duplex 304L Stainless Steel” , Welding Journal, Vol. 59, No. 9, pp. 260-262 (1980)
[22] 曾光宏,「沃斯田鐵不銹鋼銲接性之探討」,機械技術雜誌,第160期,第96-103頁(1998)。
[23] J. J. Smith, C. Perry and R. A. Farrar, “Development of a New 304L Austenitic Welding Consumable Containing Tungsten” , Journal of Materiala Science, Vol. 25, pp. 1275-1284 (1990)
[24] ASTM, Standard Practice for Microetching Metals and Alloys, E407-07 (2007)
[25] Sindo Kou, Welding Metallurgy, second edition, Wiley, pp. 158-166 (2003)
[26] E. Folkhard, G. Rabensteiner, E. Pertender and H. Schabereiter, Welding Metallurgy of Stainless Steel, Springer-Verlag, New York, pp. 55-69 (1988)
[27] T. Takalo, N. Suutala, T. Moisio, “Influence of Ferrite Content on its Morphology in Some Austenitic Weld Metals”, Metall. Trans. A, Vol. 7A, No. 10, pp. 1591-1592 (1976)
[28] C. D. Lundin, C. P. Chow, “Hot Cracking Susceptibility of Austenitic Stainless Steel Weld Metals” , Welding Research Council Bulltin, Vol. 289, p. 80 (1983)
[29] Hannu Hänninen, Anssi Brederholm, Tapio Saukkonen, Hans Gripenberg, Aki Toivonen, Ulla Ehrnstén, and Pertti Aaltonen, “Hot cracking and environmentassisted cracking susceptibility of dissimilar metal welds” , Research Notes, VTT, Finland, p. 49 (2007)
[30] S. Kou, “Solidification and Liquation Cracking Issues in Welding” , JOM, Vol. 55, No. 6, pp. 37-42 (2003)
[31] C. Huang and Kou S., “Liquation Cracking in Full-Penetration Al-Mg-Si Welds” , Welding Journal, Vol. 83, No. 4 , pp. 111-121 (2004)
[32] 晁成虎,「多重熱循環對超合金718 銲接性之影響」, 碩士論文,國立交通大學,新竹 (1986)。
[33] T. Takalo, N. Suutala, and T. Moisio, “Austenitic Solidification Mode in Austenitic Stainless Steel Welds”, Metallurgical Transaction A, Vol. 10A, No. 8, pp. 1173-1181 (1979)
[34] J. A. Brooks and A. W. Thompson, “Microstructural Development and Solidification Cracking Susceptibility of Austenitic Stanless Steel Welds”, International Materials Reviews, Vol. 36, No. 1, pp. 16-37 ( 1991)
[35] P. Bilmes and A. Gonzalez, “Effect of Ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints” , Welding International, Vol. 10, pp. 18-29 ( 1996)
[36] 曾光宏、周長彬,「銲接參數對304不銹鋼變形之影響」,機械技術雜誌,第168期,第144-150頁 (1999)。
[37] 黃錦鐘,「不銹鋼的銲接(一)不銹鋼的銲接凝固現象」,機械月刊,第二十三卷,第二期,第227-233頁 (1997)。
[38] ASM Handbook, Vol. 6, ASM International, Materials Park, OH, pp. 528-540 and pp. 722-739 (1993)
[39] 鄭慶民,「熱處理型鋁合金銲接性之研究」,博士論文,國立交通大學,新竹 (2004)。
[40] John C. Lippold and Damian J. Kotecki, Welding Metallurgy and Weldabiliry of Stainless Steels, John Wiley & Sons, Hoboken, New Jersey, pp. 311-329 (2005)
[41] 黃朝鈿,「Inconel 52M被覆於SUS 316L之特性研究」,碩士論文,國立臺灣科技大學,台北,第38-47頁 (2009)。
[42] C. T. Sims, N. S. Stoloff, and W. C. Hagel, superalloys II, John Wiley & Sons, NY, USA, p. 142(1987)
[43] K. Easterling, “Introduction to The Physical Metallrugy of Welding”, 2nd ed, Butterworth Heinemann, p. 126 (1992)
[44] B. E. Payne, “Nickel-base Welding Consumables for Dissimilar Metal Welding Applications” , Metal Construction, Vol. 1, No. l2, pp. 79-87 (1969)
[45] H. B. Cary, Modem Welding Technology, 4th, ed, Prentice-Hall, New Jersey, USA, p. 553 (1998)

QR CODE