簡易檢索 / 詳目顯示

研究生: 林澤宇
Tse-Yu Lin
論文名稱: 含兩親三嵌段共聚物之環氧樹脂奈米複材之微觀形態及韌性研究
Morphology and Toughness of the Epoxy Nanocomposites containing Amphiphilic Triblock Copolymer
指導教授: 許應舉
Ying-Gev Hsu
口試委員: 林河木
Ho-Mu Lin
王英靖
Ing-Jing Wang
陳耿明
Keng-Ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 70
中文關鍵詞: 環氧樹脂兩親三嵌段共聚物奈米複材微觀形態韌性
外文關鍵詞: epoxy resin, amphiphilic triblock copolymer, nanocomposites, morphology, toughness
相關次數: 點閱:389下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以酯化反應的方式,將數目平均分子量(Mn)為750、2000及5000之聚乙二醇甲醚 (methoxypolyethylene glycol, MPEG)分別與端羧基聚丁二烯橡膠(carboxyl-terminated polybutadiene, CTPB)改質成三種兩親三嵌段共聚物—(amphiphilic triblock copolymer) methoxypolyethylene glycol-b-polybutadiene-b-methoxypolyethylene glycol (MBMs),並將三種MBMs作為雙酚A二縮水甘油醚(diglycidyl ether bisphenol A, DGEBA) 與4-4'-二胺基二苯甲烷(4,4′-methylene dianiline, MDA)硬化之環氧樹脂DM的奈米區域增韌劑(nano domain toughener);藉由改變三種MBMs的重量比,在MBMs與DGEBA/MDA混合液的重量比為5:95的比例下,製備出具有不同微觀形態之球狀微胞(spherical micelles)和囊胞(vesilces)均勻分散在DGEBA/MDA基材(matrix)中的環氧樹脂奈米複材─DM-(MBMs),並以穿透式電子顯微鏡(TEM)觀察其微觀形態(morphology)。實驗結果發現,DM-(MBMs) 可在不影響其模數(modulus)與熱安定性(thermal stability)的情況下,大幅提升其拉伸(tensile)及破壞(fracture)韌性(toughness);以SEM觀察DM-(MBMs)經斷裂破壞後之表面形態,並進一步探討其破壞機制(fracture mechanism)。


Three kinds of amphiphilic triblock copolymers—methoxypoly- ethyleneglycol-b-polybutadiene-b-methoxypolyethylene glycol (MBMs) were synthesized via the esterification of methoxypolyethylene glycol (MPEG) of different Mn (750, 2000, and 5000) with the carboxyl-terminated polybutadiene (CTPB). The MBMs were used as nanodomain-toughener and were mixed, at 5wt%, with diglycidyl ether bisphenol A (DGEBA) /4,4′-methylene dianiline (MDA) solution and heat-cured to afford the nanocomposites—DM-(MBMs). By tuning-up weight ratios of MBMs:MBMs of different Mn, the MBMs self-assembled into nanostructured spherical micelles and vesicles and well-dispersed in the DGEBA/MDA matrix. The morphology of the DM-(MBMs) was investigated by transmission electron microscopy (TEM). It was found that the tensile and fracture toughness of the DM-(MBMs) can be improved significantly without reducing their modulus and thermal stability. The fracture surface of the nanocomposites was investigated by scanning electron microscope (SEM) and the fracture mechanism of the nanocomposites was deduced.

中文摘要 I Abstract II 誌謝 III 目錄 IV 附圖索引 VI 附表索引 IX 一、 前言 1 二、 文獻回顧 5 2.1 兩親嵌段共聚物增韌環氧樹脂之研究與發展 5 三、 基本原理 11 3.1 環氧樹脂之硬化反應 11 3.2 CTPB橡膠之酯化反應機構 13 3.3 兩親嵌段共聚物改質環氧樹脂之微觀形態形成機制 14 3.3.1 分子自組裝方式 14 3.3.2 反應引發微觀相分離 14 3.4 環氧樹脂破壞機制 16 3.4.1 空洞機制 18 3.4.2 去鍵結機制 19 3.5 拉伸試驗 21 3.5.1 楊氏模數 21 3.5.2 抗張強度 21 3.5.3 延性 21 3.5.4 拉伸韌性 22 四、 實驗部分 23 4.1 實驗藥品 23 4.2 實驗架構與流程 25 4.3 實驗方法 26 4.3.1 兩親三嵌段共聚物MBMs之合成 26 4.3.2 環氧樹脂複材DM-(MBMs)之製備 27 4.4 各項儀器測試與分析 29 4.4.1 傅立葉轉換紅外光譜儀 29 4.4.2 穿透式電子顯微鏡 29 4.4.3 高解析度掃描式電子顯微鏡 30 4.4.4 破壞韌性KIC測試 30 4.4.5 拉伸試驗測試 31 4.4.6 熱重量損失分析 31 五、 結果與討論 33 5.1 兩親三嵌段共聚物MBMs之合成 33 5.2 環氧樹脂複材DM-(MBMs)之製備 36 5.3 環氧樹脂複材DM-(MBMs)之物性分析 38 5.3.1 微觀形態分析 38 5.3.2 拉伸試驗分析 46 5.3.3 破壞韌性及破壞機制 49 5.3.4 熱安定性分析 54 六、 結論 57 七、 參考文獻 58

[1] Mimura, K.; Ito, H.; Fujioka, H., Polymer, (2001) 42, 9223.
[2] Ritzenthaler, S.; Girard-Reydet, E.; Pascault, J. P., Polymer, (2000) 41, 6375.
[3] Kim, D. S.; Cho, K.; Kim, J. K.; Park, C. E., Polymer Engineering & Science, (1996) 36, 755.
[4] Mimura, K.; Ito, H.; Fujioka, H., Polymer, (2000) 41, 4451.
[5] Hedrick, J. L.; Yilgor, I.; Jurek, M.; Hedrick, J. C.; Wilkes, G. L.; McGrath, J. E., Polymer, (1991) 32, 2020.
[6] Biolley, N.; Pascal, T.; Sillion, B., Polymer, (1994) 35, 558.
[7] Tripathi, G.; Srivastava, D., Materials Science and Engineering: A, (2007) 443, 262.
[8] Thomas, R.; Durix, S.; Sinturel, C.; Omonov, T.; Goossens, S.; Groeninckx, G.; Moldenaers, P.; Thomas, S., Polymer, (2007) 48, 1695.
[9] Thomas, R.; Abraham, J.; Thomas P, S.; Thomas, S., Journal of Polymer Science Part B: Polymer Physics, (2004) 42, 2531.
[10] Jansen, B. J. P.; Rastogi, S.; Meijer, H. E. H.; Lemstra, P. J., Macromolecules, (2001) 34, 3998.
[11] Vaia, R. A.; Wagner, H. D., Materials Today, (2004) 7, 32.
[12] Zhang, H.; Zhang, Z.; Friedrich, K.; Eger, C., Acta Materialia, (2006) 54, 1833.
[13] Landry, C. J. T.; Coltrain, B. K.; Landry, M. R.; Fitzgerald, J. J.; Long, V. K., Macromolecules, (1993) 26, 3702.
[14] Bagheri, R.; Pearson, R. A., Polymer, (1996) 37, 4529.
[15] Jordan, J.; Jacob, K. I.; Tannenbaum, R.; Sharaf, M. A.; Jasiuk, I., Materials Science and Engineering: A, (2005) 393, 1.
[16] Rebizant, V.; Abetz, V.; Tournilhac, F.; Court, F.; Leibler, L., Macromolecules, (2003) 36, 9889.
[17] Ruiz-Perez, L.; Royston, G. J.; Fairclough, J. P. A.; Ryan, A. J., Polymer, (2008) 49, 4475.
[18] Meng, F.; Zheng, S.; Zhang, W.; Li, H.; Liang, Q., Macromolecules, (2006) 39, 711.
[19] Ocando, C.; Tercjak, A.; Martin, M. D.; Ramos, J. A.; Campo, M. n.; Mondragon, I. a., Macromolecules, (2009) 42, 6215.
[20] Yang, X.; Yi, F.; Xin, Z.; Zheng, S., Polymer, (2009) 50, 4089.
[21] Lipic, P. M.; Bates, F. S.; Hillmyer, M. A., Journal of the American Chemical Society, (1998) 120, 8963.
[22] Dean, J. M.; Lipic, P. M.; Grubbs, R. B.; Cook, R. F.; Bates, F. S., Journal of Polymer Science Part B: Polymer Physics, (2001) 39, 2996.
[23] Liu, J.; Thompson, Z. J.; Sue, H.-J.; Bates, F. S.; Hillmyer, M. A.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H., Macromolecules, (2010) 43, 7238.
[24] Hillmyer, M. A.; Lipic, P. M.; Hajduk, D. A.; Almdal, K.; Bates, F. S., Journal of the American Chemical Society, (1997) 119, 2749.
[25] Dean, J. M.; Verghese, N. E.; Pham, H. Q.; Bates, F. S., Macromolecules, (2003) 36, 9267.
[26] Guo, Q.; Thomann, R.; Gronski, W.; Thurn-Albrecht, T., Macromolecules, (2002) 35, 3133.
[27] Sun, P.; Dang, Q.; Li, B.; Chen, T.; Wang, Y.; Lin, H.; Jin, Q.; Ding, D.; Shi, A.-C., Macromolecules, (2005) 38, 5654.
[28] Konczol, L.; Doll, W.; Buchholz, U.; Mulhaupt, R., Journal of Applied Polymer Science, (1994) 54, 815.
[29] Liu, J.; Sue, H.-J.; Thompson, Z. J.; Bates, F. S.; Dettloff, M.; Jacob, G.; Verghese, N.; Pham, H., Macromolecules, (2008) 41, 7616.
[30] Ocando, C.; Tercjak, A.; Serrano, E.; Ramos, J. A.; Corona-Galvan, S.; Parellada, M. D.; Fernandez-Berridi, M. J.; Mondragon, I., Polymer International, (2008) 57, 1333.
[31] John, E. M., Organic Chemistry, 8th edition, Mary Finch: (2011).
[32] Ritzenthaler, S.; Court, F.; David, L.; Girard-Reydet, E.; Leibler, L.; Pascault, J. P., Macromolecules, (2002) 35, 6245.
[33] Hermel-Davidock, T. J.; Tang, H. S.; Murray, D. J.; Hahn, S. F., Journal of Polymer Science Part B: Polymer Physics, (2007) 45, 3338.
[34] Meng, F.; Xu, Z.; Zheng, S., Macromolecules, (2008) 41, 1411.
[35] Ocando, C.; Serrano, E.; Tercjak, A.; Pena, C.; Kortaberria, G.; Calberg, C.; Grignard, B.; Jerome, R.; Carrasco, P. M.; Mecerreyes, D.; Mondragon, I., Macromolecules, (2007) 40, 4068.
[36] Dean, J. M.; Grubbs, R. B.; Saad, W.; Cook, R. F.; Bates, F. S., Journal of Polymer Science Part B: Polymer Physics, (2003) 41, 2444.
[37] Zhao, S.; Schadler, L. S.; Duncan, R.; Hillborg, H.; Auletta, T., Composites Science and Technology, (2008) 68, 2965.
[38] Wu, J.; Thio, Y. S.; Bates, F. S., Journal of Polymer Science Part B: Polymer Physics, (2005) 43, 1950.
[39] Sperling, L. H., Introduction to Physical Polymer Science, In John Wiley & Sons, Inc.: (2005).
[40] Jansen, B. J. P.; Rastogi, S.; Meijer, H. E. H.; Lemstra, P. J., Macromolecules, (1999) 32, 6290.
[41] Soares, B. G.; Dahmouche, K.; Lima, V. D.; Silva, A. A.; Caplan, S. P. C.; Barcia, F. L., Journal of Colloid and Interface Science, (2011) 358, 338.
[42] Silverstein, R. M., Spectrometric Identification of Organic Compounds, 6th Edition, Wiley, New York: (1998).
[43] Hsu, Y.-G.; Liang, C.-W., Journal of Applied Polymer Science, (2007) 106, 1576.
[44] Heise, M. S.; Martin, G. C., Macromolecules, (1989) 22, 99.
[45] Arias, M. a. L.; Frontini, P. M.; Williams, R. J. J., Polymer, (2003) 44, 1537.
[46] Xiao, K.; Ye, L.; Kwok, Y. S., Journal of Materials Science, (1998) 33, 2831.
[47] Liu, W.; Hoa, S. V.; Pugh, M., Polymer Engineering & Science, (2004) 44, 1178.
[48] Zheng, S.; Wang, J.; Guo, Q.; Wei, J.; Li, J., Polymer, (1996) 37, 4667.
[49] Wise, C. W.; Cook, W. D.; Goodwin, A. A., Polymer, (2000) 41, 4625.
[50] Hydro, R. M.; Pearson, R. A., Journal of Polymer Science Part B: Polymer Physics, (2007) 45, 1470.

QR CODE