簡易檢索 / 詳目顯示

研究生: 蔡秉霖
Ping-Lin Tsai
論文名稱: 氯丁橡膠以ETU、PDM、DBTU為交聯劑 探討其配合效應
The Performance of Cross-Linking System Effect on Chloroprene Rubber
指導教授: 邱顯堂
Hsien-Tang Chiu
邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
YOU,JIN-YANG
吳昌謀
WU,CHANG-MOU
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 73
中文關鍵詞: 交聯劑氯丁橡膠乙烯硫脲N,N-間苯撐雙馬來醯亞胺N,N,二正丁基硫脲
外文關鍵詞: Cross-Linking System, ETU, PDM, DBTU, Chloroprene Rubber
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

氯丁橡膠為第一批發明出來的合成橡膠,其各種性質兼備,以致於從發明到現今社會都還在使用,也因為其泛用性,短時間內人類社會無法不去使用。環保意識日漸發展的現今,對於影響人類健康的化合物,人們也提出應該要禁用某些材料。
歐盟於2007年6月起實施「新化學品政策」(Registration, Evaluation, Authorisation and Restriction of Chemical Substances, REACH),針對具人體健康或環境危害性之化學物質進行初步篩選評估,並公告「高度關注物質候選清單」(Candidate List of Substances of Very High Concern, SVHC),若清單物質經審查認定有害,則該物質需申請許可,獲得授權後方可使用或置入歐盟市場[1]。
本研究選用選用Ethylene thiourea(ETU)、N,N'-phenylene dimaleimide(PDM)、N, N'-dibutyl thiourea (DBTU)三種交聯劑,首先以微型混煉機依配方製作出橡膠試片,透過硫化曲線及木尼黏度測試,分析不同填料份量及種類之硫化膠性質,再透過物理機械性質分析比較配方間差異,如比重、硬度、拉伸強度、撕裂強度、熱老化、耐油性、耐磨耗以及永久壓縮變形率。
由實驗得知PDM在應力強度上、耐老化特性、耐磨耗特性、抗壓縮變形上都有突出的表現。其無硫分子式,對於氯丁橡膠交聯結構中帶有C-C鍵結幫助橡膠整體強度增強,與含硫交聯劑相比下有競爭力。


Neoprene was the first synthetic rubber invented. It has all kinds of properties, so that it is common used until now. Because of its versatility, it won’t vanish in a short time. And with the growing awareness of environmental protection, people have also suggested that certain compounds that affect human health should be banned.
The European Union implemented the "Registration, Evaluation, Authorisation and Restriction of Chemical Substances (REACH)" in June 2007, conducted preliminary screening and evaluation of chemical substances with human health or environmental hazards, and announced "high concern "Candidate List of Substances of Very High Concern (SVHC)", if the substances in the list are found to be harmful after review, the substance needs to apply for a permit and can only be used or placed on the EU market after obtaining authorization.
In this study, three cross-linking agents, ETU, PDM, and DBTU, were selected. First, a rubber test piece was prepared according to the formula using by micro-mixer. The vulcanization curve and the Mooney viscosity test were used to analyze the properties of vulcanizates with different filler contents and types. Analysis of physical and mechanical properties compares differences between formulas, such as specific gravity, hardness, tensile strength, tear strength, heat aging, oil resistance, abrasion resistance, and compression deformation rate.
It is known from experiments that PDM has outstanding performances in stress intensity, aging resistance, wear resistance and compression resistance. Its sulfur-free molecular formula puts C-C bonding in the crosslinked structure of chloroprene rubber to help strengthen the overall strength of the rubber, which is competitive with sulfur-containing crosslinkers.

第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 2 2.1 氯丁橡膠 2 2.2 ETU 4 2.3 PDM 7 2.4 DBTU 10 2.5 ZnO 12 2.5.1 ZnO在橡膠硫化體系中的應用 12 2.6 橡膠硫化歷史[15] 14 2.6.1 橡膠硫化歷史 14 2.6.2 橡膠硫化體系 15 第三章 實驗部分 19 3.1 實驗架構 19 3.2 材料及配方 20 3.2.1 使用材料及配方 20 3.3 試驗方法與步驟 22 3.3.1 硫化膠製備 22 3.3.2 硫化性質測試 24 3.3.2.1 木尼黏度試驗(Mooney Viscosity)[17] 24 3.3.2.2 硫化試驗(Vulcanization) 26 3.3.3 機械性質測試 27 3.3.3.1 比重試驗(Specific Gravity) 27 3.3.3.2 硬度試驗(Hardness) 28 3.3.3.3 拉伸強度及伸長率試驗(Stress and Starin) 29 3.3.3.4 熱老化試驗(Aging Test)[18] 31 3.3.3.5 耐油性試驗(Oil Resistance Test) 32 3.3.3.6 撕裂強度試驗(Tear Strain) 33 3.3.3.7 永久壓縮變形試驗(Compression Set) 35 3.3.3.8 耐磨耗試驗(Wear Resistance Test ) 37 第四章 結果與討論 39 4.1 硫化性質分析 39 4.1.1 木尼黏度試驗(Mooney Viscosity) 39 4.1.2 硫化曲線(Vulcanization Curve) 41 4.2 機械性質分析 43 4.2.1 比重試驗(Specific Gravity) 43 4.2.2 硬度試驗(Hardness) 44 4.2.3 拉伸強度及伸長率試驗(Stress and Starin) 46 4.2.4 熱老化試驗(Aging Test) 48 4.2.5 耐油性試驗(Water Absorption Test) 50 4.2.6 耐磨耗試驗(Wear Resistance Test) 52 4.2.7 撕裂強度試驗(Tear strength) 54 4.2.8 永久壓縮變形試驗(Compression Set) 56 第五章 結論 58 第六章 參考文獻 59

[1] J. Schenten, M. Führ, SVHC in imported articles: REACH authorisation requirement justified under WTO rules, Environmental Sciences Europe 28(1) (2016) 21.
[2] S. Hrouzková, E. Matisová, Endocrine disrupting pesticides, Pesticide—Advances in Chemical and Botanical Pesticides (2012) 99-126.
[3] 徐仲宝, 罗权焜, 氯丁橡胶/丁苯橡胶共混物的研究, 特种橡胶制品 26(5) (2005) 1-3.
[4] H. Ismail, H. Leong, Curing characteristics and mechanical properties of natural rubber/chloroprene rubber and epoxidized natural rubber/chloroprene rubber blends, Polymer Testing 20(5) (2001) 509-516.
[5] A.O. Patil, T.S. Coolbaugh, Elastomers: a literature review with emphasis on oil resistance, Rubber Chemistry and Technology 78(3) (2005) 516-535.
[6] P. Sae-Oui, C. Sirisinha, K. Hatthapanit, Effect of blend ratio on aging, oil and ozone resistance of silica-filled chloroprene rubber/natural rubber (CR/NR) blends, Express Polymer Letters 1(1) (2007) 8-14.
[7] N.L. Catton, The neoprenes: principles of compounding and processing, Rubber Chemicals Division, EI Du Pont de Nemours1953.
[8] H. Desai, K. Hendrikse, C. Woolard, Vulcanization of polychloroprene rubber. I. A revised cationic mechanism for ZnO crosslinking, Journal of applied polymer science 105(2) (2007) 865-876.
[9] P. Mallon, W. McGill, D. Shillington, A DSC study of the crosslinking of polychloroprene with ZnO and MgO, Journal of applied polymer science 55(5) (1995) 705-721.
[10] T. Okada, T. Ikushige, Quantitative estimation of trans‐1, 4 and cis‐1, 4 isomers in polychloroprene by high‐resolution NMR, Journal of Polymer Science: Polymer Chemistry Edition 14(8) (1976) 2059-2063.
[11] R.C. Ferguson, Infrared and nuclear magnetic resonance studies of the microstructures of polychloroprenes, Journal of Polymer Science Part A: General Papers 2(11) (1964) 4735-4741.
[12] W. Hofmann, Vulcanization and vulcanizing agents, Maclaren London1967.
[13] A. Das, N. Naskar, D.K. Basu, Thiophosphoryl disulfides as crosslinking agents for chloroprene rubber, Journal of applied polymer science 91(3) (2004) 1913-1919.
[14] A. Das, N. Naskar, R. Datta, P. Bose, S. Debnath, Naturally occurring amino acid: Novel curatives for chloroprene rubber, Journal of applied polymer science 100(5) (2006) 3981-3986.
[15] H. Kato, H. Fujita, Some Novel Systems for Crosslinking Polychloroprene, Rubber Chemistry and Technology 48(1) (1975) 19-25.
[16] C. Hepburn, M. Mahdi, Amine bridged amides (ABA's) which function as multipurpose vulcanising agents and processing aids in polychloroprene rubber, Kautschuk und Gummi, Kunststoffe 39(7) (1986) 629-632.
[17] P. Sae-oui, C. Sirisinha, U. Thepsuwan, K. Hatthapanit, Dependence of mechanical and aging properties of chloroprene rubber on silica and ethylene thiourea loadings, European Polymer Journal 43(1) (2007) 185-193.
[18] P. Kovacic, Bisalkylation theory of neoprene vulcanization, Industrial & Engineering Chemistry 47(5) (1955) 1090-1094.
[19] R. Pariser, NeuereErgebnisse zur Elastomeren-Vernetzung, English: German Plastics Digest Kunststoffe 50 (1960) 623.
[20] K. Berry, M. Liu, K. Chakraborty, N. Pullan, A. West, C. Sammon, P.D. Topham, Mechanism for cross-linking polychloroprene with ethylene thiourea and zinc oxide, Rubber Chemistry and Technology 88(1) (2015) 80-97.
[21] 刘祖广, 陈朝晖, 王迪珍, N, N—间苯撑双马来酰亚胺在天然橡胶普通硫黄硫化体系中的应用, 合成材料老化与应用 32(1) (2003) 12-15.
[22] A. Hassan, M.U. Wahit, C.Y. Chee, Mechanical and morphological properties of PP/NR/LLDPE ternary blend—effect of HVA-2, Polymer Testing 22(3) (2003) 281-290.
[23] 季振青, 郭睿, 苟文亮, 促进剂 DBTU 合成方法的改进研究及表征, 化学试剂 32(6) (2010) 541-544.
[24] S. Tantayanon, S. Juikham, Enhanced toughening of poly (propylene) with reclaimed‐tire rubber, Journal of Applied Polymer Science 91(1) (2004) 510-515.
[25] R.N. Datta, Rubber curing systems, iSmithers Rapra Publishing2002.
[26] 刘心慧, 高健, 橡胶硫化仪的概况, 橡胶科技 (9) (2013) 38-44.
[27] V. Lönnberg, P. Starck, Comparison of the weather resistance of different thermoplastic elastomers, Polymer testing 16(2) (1997) 133-145.

無法下載圖示 全文公開日期 2025/02/04 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE