簡易檢索 / 詳目顯示

研究生: Zelalem Gudeta Abdi
Zelalem Gudeta Abdi
論文名稱: 交聯之離子化聚苯並咪唑製備與陰離子交換膜燃料電池之應用
Synthesis and Characterization of Crosslinked Ionic Polybenzimidazole-Based Anion Exchange Membrane for Fuel Cell Applications
指導教授: 陳志堅
Jyh-Chien Chen
口試委員: Chin-Yang Yu
Chin-Yang Yu
Kung-Li Wang
Kung-Li Wang
Ru-Jong Jeng
Ru-Jong Jeng
Ping-Yen Chen
Ping-Yen Chen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 129
中文關鍵詞: 陰離子交換膜Thiol-ene反應聚苯並咪唑離子交換容量鹼性穩定性
外文關鍵詞: alkaline stability
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學轉換之燃料電池作為未來再生能源的主力有許多優點,其中陰離子交換膜能使用非貴金屬催化劑之特性更受到了學者們的關注, 但仍有些問題需要解決,如較低的離子傳導率與待提升的機械強度和尺寸穩定性等等。本篇研究主要以交聯的手法調整並提升交換膜整體的性質,在第一篇研究中,我們運用商用品m-PBI進行改質,將四級銨鹽和雙鍵基團接枝於主鏈上,再利用thiol-ene反應進行熱交聯,藉由調整四級銨與雙鍵的比例控制離子交換容量(Ion exchange capacity, IEC)於1.51至2.50 mmol/g之間,並於攝氏80度下得到介於14至58 mS/cm的離子傳導率之陰離子交換膜。在相近的IEC下,交聯的陰離子交換膜能有相似的傳導率,但有更低的吸水率與更好的尺寸穩定性,室溫下其濕膜之抗拉強度介於10.8至14.6 MPa。而IEC=2.46 mmol/g的陰離子交換膜經過交聯,浸泡於60度的1 M氫氧化鈉水溶液720個小時後,能保留84 %的傳導率。
    第二部分,我們同樣利用第一部分之陰離子交換膜,但另外導入疏水的乙烷基,能增加其溶解度,並使IEC的改質範圍增大至0.75~2.55 mmol/g。經過交聯過後的陰離子交換膜傳導率於80度時介於16~86 mS/cm之間,濕膜也有不錯的機械強度,抗拉強度介於12.2~20.1 MPa之間,楊式係數介於0.67~1.45 GPa。穩定性的測量上,0.40Q0.60Et1.00Pr (IEC=0.95 mmol/g)在經過80度的1 M氫氧化鈉水溶液720個小時後,只損失7.9 %傳導率。單電池性能上,60度時功率密度最高能到達136 mW/cm2,最大電流密度到達377 mA/cm2。本篇也會同時與第一篇中未加入乙烷基的陰離子交換膜做比較。
    最後,我們同樣利用商用品m-PBI作為主鏈,四級銨作為側鏈,我們改以聚氯苯甲氯乙烯(PVBC)進行交聯,以重量比1:1的方式進行溶液塗佈以維持機械強度,其中1.35QPBI-PVBC具有108 mS/cm之離子傳導率,該薄膜具有更低的吸水率及更好的機械強度與尺寸穩定性。此外,其鹼性穩定性在經過80度的1 M氫氧化鈉水溶液720個小時後,只損失4.9 %傳導率與4.4 % IEC。經過一系列的研究後,我們認為這一系列交聯之PBI薄膜有做為陰離子交換膜之潛力。


    Fuel cells are electrochemical tools that have been set up to lead the transition to renewable energy technology and will become the future energy efficient source. Among fuel cell system anion exchange membrane fuel cells are recently attention given. The basic environment opens the door for anion exchange membrane, the use of cheaper catalysts, which lower the cost barrier associated with proton exchange membrane fuel cells. However, anion exchange membranes exhibited, low ionic conductivity, low dimensional stability, and poor mechanical strength compared to proton exchange membrane, offsetting any potential cost advantage that may afford.
    This dissertation demonstrates the crosslinking approaches of polybenzimidazle-based AEMs to solve the dilemma between ionic conductivity and dimensional change problem as well as to improve the alkaline stability of AEMs.
    In the first work, we developed new anion exchange membranes using m-polybenzimidazole (m-PBI) as polymer backbone grafted with quaternary ammonium group and alkene group as side chains. Thiol-ene reaction was used to crosslink these ionic m-PBIs under thermal conditions. The ion exchange capacity (IEC) values and crosslinking degrees were monitored separately using the amount grafted quaternary ammonium groups and alkene groups, respectively. The prepared AEMs, IEC values ranged from 1.51 to 2.50 mmolg-1 show hydroxide conductivity of 14 to 58 mS/cm at 80 °C. With similar IEC values, crosslinked membranes consume less water but have similar hydroxide conductivity and greater dimensional stability than uncrosslinked membranes. A crosslinked membrane with an IEC value of 2.46 mmolg-1 will maintain 84% of its pristine hydroxide conductivity after being soaked in 1.0 M sodium hydroxide solution at 60 °C after 720 h. These membranes are also mechanically robust in the hydrated state, with tensile strengths ranging from 10.8 to 14.6 MPa at room temperature.
    In the second work, new anion exchange membranes (AEMs) based on crosslinked polybenzimidazole (m-PBI) with quaternary ammonium groups, crosslinkable allyl groups, and hydrophobic ethyl groups as side chains are synthesized. The introduction of ethyl groups improved the solubility of ionic PBIs even at very low IEC values by eliminating the hydrogen bonding interaction of imidazole rings. This method allows ionic PBIs with broad IEC values, from 0.75 to 2.55 mmolg-1, to be prepared. The broad IEC values were achieved by independently controlling the numbers of quaternary ammonium groups, allyl groups, and hydrophobic ethyl groups during preparation. The crosslinked ionic PBIs showed hydroxide conductivity from 16 to 86 mS/cm at 80 °C. The wet membranes also showed excellent mechanical strength with the tensile strength of 12.2 to 20.1 MPa and Young’s Modulus of 0.67 to 1.45 GPa. The hydroxide conductivity of a crosslinked membrane (0.40Q0.60Et1.00Pr, IEC=0.95 mmolg-1) decreased only 7.9% after the membranes were immersed in a 1.0 M sodium hydroxide solution at 80 oC for 720 h. A single fuel cell based on this membrane showed a maximum peak power density of 136 mW/cm2 with a current density of 377 mA /cm2 at 60 °C. Introduction of the hydrophobic side chain to ionic PBI-based AEMs improved the alkaline stability, mechanical strength, and a single cell performance compared with that of without hydrophobic side chain as studied in the first work.
    In the final work, to prepare the anion exchange membranes, which have high ionic conductivity, low dimensional change, and excellent alkaline stability, new crosslinked polybenzimidazole-based AEMs with poly(vinylbenzyl chloride) were synthesized. The partial quaternized polybenzimidazole is covalently crosslinked with poly(vinylbenzyl chloride) using solution casting methods. The mass ratio of partially quaternized polybenzimidazole to poly(vinylbenzyl chloride) was controlled by one to one, to maintained good mechanical strength. It demonstrated that the developed AEMs, show a well-defined nano-phase separation structure, leading to relatively high hydroxide conductivity of 108.56 mS/cm for 1.35QPBI-PVBC membrane. The prepared AEMs, relatively exhibit less water uptake and dimensional change, because of the existence of a strong crosslinking structure between the two polymers. In addition, the developed AEMs, also have good mechanical strength and excellent alkaline stability. 1.35QPBI-PVBC membrane, with higher ion exchange capacity (IEC=2.52 mmolg-1), only 4.9% hydroxide conductivity loss and 4.4% loss in ion exchange capacity observed, after soaking into 1.0 M KOH at 80 °C for 720 h. Based on our findings, crosslinked ionic m-PBIs We prepared to appear to be a promising candidate for use in fuel cells application as anion exchange membranes.

    摘要 i Abstract iii Acknowledgment vi Acronym viii List of Figures xiii List of Tables xvi List of Schemes xvii Chapter 1: Introduction 1 1.1. Background of Fuel Cells 1 1.2. Proton Exchange Membrane Fuel Calls (PEMFCs) 1 1.3. Anion Exchange Membrane Fuel Cells (AEMFCs) 3 Chapter 2: Literature Review 6 2.1. Materials as Anion Exchange Membranes 6 2.1.1. Polymer Backbone 6 2.1.1.1. AEMs Based on Poly(sulfone)s 7 2.1.1.2. AEMs Based on Poly(phenylene oxides) (PPOs) 9 2.1.1.3. AEMs Based on Poly(olefin)s 12 2.1.1.4. AEMs Based on Polybenzimidazoles (PBIs) 13 2.1.2. Cationic groups 18 2.1.3. The position of cationic group with the polymer backbone 19 2.2. Alkaline stability and degradation mechanism of AEMs 20 2.2.1. Alkaline stability of cationic groups 20 2.2.2. Alkaline stability of polymer backbone 21 2.3. Designed approaches 22 2.3.1. Crosslinked AEMs 22 2.3.1.1. Crosslinked AEMs via thiol-ene reaction 22 2.3.1.2. Crosslinked polybenzimidazole-based AEMs 25 2.3.2. Forming phase separation structure of AEMs 27 2.4. General Outline 28 2.5. Motivations and Objectives 29 2.5.1. Motivations 29 2.5.2. Objectives 30 Chapter 3: Experimental Section 32 3.1. Materials 32 3.2. Synthesis methods 32 3.2.1. Synthesis of m-polybenzimidazole (m-PBI) 32 3.3. Characterization methods 33 3.3.1. NMR characterization 33 3.3.2. Fourier transform infrared (FT-IR) spectroscopy characterization 33 3.3.3. Thermal gravimetric analyses (TGA) 33 3.3.4. Scanning electron microscope (SEM) 34 3.3.5. Atomic force microscope (AFM) 34 3.3.6. Mechanical testing 34 3.3.7. Ion exchange capacity (IEC) measurements 34 3.3.8. Water uptake (Wu) and dimensional change (DC) measurement 35 3.3.9. Gel fraction measurement 36 3.3.10. Hydroxide conductivity 36 3.3.11. Inherent viscosity 37 3.3.12. Alkaline stability 37 3.3.13. Fuel cell testing 38 Chapter 4: Anion Exchange Membranes Based on Ionic Polybenzimidazoles Crosslinked by Thiol-ene Reaction 39 4.1. Introduction 39 4.2. Synthesis methods 41 4.2.1. Grafting of m-polybenzimidazole with (5-bromopentyl) trimethyl ammonium bromide (Quaternary ammonium groups) (QA) and allyl bromide groups 41 4.2.2. Crosslinking membranes and anion exchange 42 4.3. Results and discussion 42 4.3.1. Synthesis of m-polybenzimidazole (m-PBI) and structural characterization 42 4.3.2. Synthesis and structural characterization of polybenzimidazoles grafted with (5-bromopentyl) trimethyl ammonium bromide (quaternary ammonium groups) and allyl bromide 44 4.3.3. Characterization of crosslinked AEMs 48 4.3.4. Properties of membranes 51 4.3.4.1. IEC, WU, DC, and hydroxide conductivity 51 4.3.4.2. Thermal stability of AEMs 55 4.3.4.3. Mechanical Properties of AEMs 56 4.3.4.4. Morphology of AEMs 58 4.3.4.5. Alkaline stability of AEMs 60 4.3.4.6. Single fuel cell performance 62 4.4. Summery 63 Chapter 5: Synthesis of Ionic Polybenzimidazoles-based Anion Exchange Membrane with Broad Ion Exchange Capacity Range for Fuel Call Application. 64 5.1. Introduction 64 5.2. Synthesis methods 67 5.2.1. Grafting of ethyl bromide, (5-bromopentyl) trimethylammonium bromide, and allyl bromide groups to m-PBI 67 5.2.2. Preparations of crosslinked AEMs and ion exchange 68 5.3.2. Membrane crosslinking and characterization 71 5.3.3. Membrane properties 74 5.3.3.1. IEC, WU, DC, gel fraction, and hydroxide conductivity 74 5.3.3.2. Thermal properties 77 5.3.3.3. Mechanical properties 78 5.3.3.4. Membrane morphology 79 5.3.3.5 Alkaline stability 80 5.3.3.6. Single fuel cell performance 82 5.4. Summery 83 Chapter 6: Synthesis of Crosslinked Ionic Polybenzimidazole-based Anion Exchange Membrane with Poly (vinylbenzyl chloride) for Fuel Cell Applications 84 6.1. Introduction 84 6.2. Synthesis methods 86 6.2.1. Synthesis of crosslinked xQPBI-PVBC AEMs 86 6.3.2. Membrane properties 92 6.3.2.1. IEC, WU, DC, gel fraction, and hydroxide conductivity 92 6.3.2.2. Thermal properties 95 6.3.2.3. Membrane mechanical properties 96 6.3.2.4. The morphology of the membrane 97 6.3.2.5. Alkaline stability 98 6.4. Summery 100 Chapter 7: Conclusions and Future Perspectives 102 7.1. Conclusions 102 7.2. Future perspectives 104 8. References 105 Appendixes 123

    [1] K. E. Martin, J. P. Kopasz, K. W. McMurphy, Status of fuel cells and the challenges facing fuel cell technology today, fuel cell chemimstry and operation, J. Am. Chem. Soc. 1040(2010), 1-13.
    [2] P. P. Edwards, V. L. Kuznetsov, W. L. F. David, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, 36(2008),12, 4356-4362.
    [3] S. J. Peighambardoust, S. Rowshanzamir, M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Inter. J. Hydrogen Energy, 35(2010), 17, 9349-9384.
    [4] N. Sammes, R. Bove, K. Stahl, Phosphoric acid fuel cells: Fundamentals and applications, Curr. Opin. Solid State Mater. Sci. 8(2004), 5, 372-378.
    [5] A. Kraytsberg, Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy Fuels, 28(2014), 12, 7303-7330.
    [6] G. Merle, M. Wessling, K. Nijmeijer, Anion exchange membranes for alkaline fuel cells, A review. J. Membr. Sci. 377(2011), 1, 1-35.
    [7] P. Heidebrecht, K. Sundmacher, Molten carbonate fuel cell (MCFC) with internal reforming: Model-based analysis of cell dynamics, Chem. Eng. Sci. 58(2003), 3, 1029-1036.
    [8] N. Q. Minh, Solid oxide fuel cell technology features and applications, Solid State Ion. 174(2004), 1, 271-277.
    [9] J. -C. Chen, J. -A. Wu, C. -Y. Lee, M. -C. Tsai, K. -H. Chen, Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel, J. Membr. Sci. 483(2015), 144-154.
    [10] V. M. Vishnyakov, Proton exchange membrane fuel cells, Vacuum, 80(2006), 10, 1053-1065.
    [11] S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K. -T. Lau, J. H. Lee, Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges, Prog. Polym. Sci. 36(2011), 6, 813-843.
    [12] P. Costamagna, S. Srinivasan, Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. engineering, technology development and application aspects, J. Power Sources, 102(2001), 1, 253-269.
    [13] Q. Li, J. O. Jensen, R. F. Savinell, N. J. Bjerrum, High temperature proton exchange membranes based on polybenzimidazoles for fuel cells, Prog. Polym. Sci. 34(2009), 5, 449-477.
    [14] A. K. Mishra, S. Bose, T. Kuila, N. H. Kim, J. H. Lee, Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells, Prog. Polym. Sci. 37(2012), 6, 842-869.
    [15] C. Wang, B. Mo, Z. He, X. Xie, C. X. Zhao, L. Zhang, Q. Shao, X. Guo, E. K. Wujcik, Z. Guo, Hydroxide ions transportation in polynorbornene anion exchange membrane, Polymer, 138(2018), 363-368.
    [16] J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, L. Zhuang, Anion-exchange membranes in electrochemical energy systems, Energy Environ. Sci. 7(2014), 10, 3135-3191.
    [17] S. C. Ramírez, R. R. Paz, Hydroxide transport in anion-exchange membranes for alkaline fuel cells, in New Trends in Ion Exchange Studies, 2018.
    [18] G. Wang, Y. Weng, D. Chu, R. Chen, D. Xie, Developing a polysulfone-based alkaline anion exchange membrane for improved ionic conductivity, J. Membr. Sci. 332(2009), 1, 63-68.
    [19] N. Li, Q. Zhang, C. Wang, Y. M. Lee, M. D. Guiver, Phenyltrimethylammonium functionalized polysulfone anion exchange membranes, Macromolecules, 45(2012), 5, 2411-2419.
    [20] T. Li, X. Yan, J. Liu, X. Wu, X. Gong, D. Zhen, S. Sun, W. Chen, G. He, Friedel-crafts alkylation route for preparation of pendent side chain imidazolium-functionalized polysulfone anion exchange membranes for fuel cells, J. Membr. Sci. 573(2019), 157-166.
    [21] Y. Zhang, W. Chen, X. Yan, F. Zhang, X. Wang, X. Wu, B. Pang, J. Wang, G. He, Ether spaced N-spirocyclic quaternary ammonium functionalized crosslinked polysulfone for high alkaline stable anion exchange membranes, J. Membr. Sci. 598(2020), 117650.
    [22] A. D. Mohanty, S. E. Tignor, J. A. Krause, Y. -K. Choe, C. Bae, Systematic alkaline stability study of polymer backbones for anion exchange membrane applications, Macromolecules, 49(2016), 9, 3361-3372.
    [23] A. Amel, L. Zhu, M. Hicken, Y. Ein-Eli, Influence of sulfone linkage on the stability of aromatic quaternary ammonium polymers for alkaline fuel cells, J. Electrochem. Soc. 161(2014), 5, F615-F621.
    [24] Y. Li, T. Xu, M. Gong, Fundamental studies of a new series of anion exchange membranes: Membranes prepared from bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) and pyridine, J. Membr. Sci. 279(2006), 1, 200-208.
    [25] L. Gao, G. He, Y. Pan, B. Zhao, X. Xu, Y. Liu, R. Deng, X. Yan, Poly(2,6-dimethyl-1,4-phenylene oxide) containing imidazolium-terminated long side chains as hydroxide exchange membranes with improved conductivity, J. Membr. Sci. 518(2016), 159-167.
    [26] H. -S. Dang, E.A. Weiber, P. Jannasch, Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes, J. Mater. Chem. A. 3(2015), 10, 5280-5284.
    [27] L. Zhu, X. Peng, S. -L. Shang, M. T. Kwasny, T. J. Zimudzi, X. Yu, N. Saikia, J. Pan, Z. -K. Liu, G. N. Tew, W. E. Mustain, M. Yandrasits, M. A. Hickner, High performance anion exchange membrane fuel cells enabled by fluoropoly(olefin) membranes, Adv. Funct. Mater. 29(2019), 26, 1902059.
    [28] L. Zhu, X. Yu, X. Peng, T. J. Zimudzi, N. Saikia, M. T. Kwasny, S. Song, D. I. Kushner, Z. Fu, G. N. Tew, W. E. Mustain, M. A. Yandrasits, M. A. Hickner, Poly(olefin)-based anion exchange membranes prepared using Ziegler–Natta polymerization, Macromolecules, 52(2019), 11, 4030-4041.
    [29] O. D. Thomas, K. J. W. Y. Soo, T. J. Peckham, M. P. Kulkarni, S. Holdcroft, Anion conducting poly(dialkyl benzimidazolium) salts, Polym. Chem. 2(2011), 8, 1641-1643.
    [30] D. Henkensmeier, H. -J. Kim, H. -J. Lee, D. H. Lee, I. -H. Oh, S. -A. Hong, Polybenzimidazolium-based solid electrolytes, Macromol. Mater. Eng. 296(2011), 10, 899-908.
    [31] F. H. Liu, C. X. Lin, E. N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu, Q. L. Liu, Anion exchange membranes with well-developed conductive channels: Effect of the functional groups, J. Membr. Sci. 564(2018), 298-307.
    [32] T O. D. Thomas, K. J. W. Y. Soo, T. J. Peckham, M. P. Kulkarni, S. Holdcroft, A stable hydroxide-conducting polymer, J. Am. Chem. Soc. 134(2012), 26, 10753-10756.
    [33] L. -C. Jheng, S. L. -C. Hsu, B. -Y. Lin, Y. -L. Hsu, Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells, J. Membr. Sci. 460(2014), 160-170.
    [34] S. Li, X. Zhu, D. Liu, F. Sun, A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC, J. Membr. Sci. 546(2018), 15-21.
    [35] B. Lin, F. Xu, Y. Su, J. Han, Z. Zhu, F. Chu, Y. Ren, L. Zhu, J. Ding, Ether-free polybenzimidazole bearing pendant imidazolium groups for alkaline anion exchange membrane fuel cells application, ACS Appl. Energy Mater. 3(2020), 1, 1089-1098.
    [36] Z. Sun, B. Lin, F. Yan, Anion-exchange membranes for alkaline fuel-cell applications: The effects of cations, ChemSusChem, 11(2018), 1, 58-70.
    [37] J. Yan, M.A. Hickner, Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s, Macromolecules, 43( 2010), 5, 2349-2356.
    [38] J. A. Vega, C. Chartier, W.E. Mustain, Effect of hydroxide and carbonate alkaline media on anion exchange membranes, J. Power Sources, 195(2010), 21, 7176-7180.
    [39] C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, L. Liu, Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells, J. Mater. Chem. A. 4(2016), 36, 13938-13948.
    [40] Y. He, X. Ge, X. Liang, J. Zhang, M. A. Shehzad, Y. Zhu, Z. Yang, L. Wu, T. Xu, Anion exchange membranes with branched ionic clusters for fuel cells, J. Mater. Chem. A. 6(2018), 14, 5993-5998.
    [41] M. G. Marino, K.D. Kreuer, Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids, ChemSusChem, 8(2015), 3, 513-523.
    [42] Y. Ye, Y.A. Elabd, Relative chemical stability of imidazolium-based alkaline anion exchange polymerized ionic liquids, Macromolecules, 44(2011), 21, 8494-8503.
    [43] M. Zhang, J. Liu, Y. Wang, L. An, M. D. Guiver, N. Li, Highly stable anion exchange membranes based on quaternized polypropylene, J. Mater. Chem. A. 3(2015), 23, 12284-12296.
    [44] C. G. Arges, V. Ramani, Two-dimensional NMR spectroscopy reveals cation-triggered backbone degradation in polysulfone-based anion exchange membranes, Proceedings of the National Academy of Sciences, 110(2013), 7, 2490.
    [45] A. B. Lowe, Thiol-ene “click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 1(2010), 1, 17-36.
    [46] T. -H. Tsai, S. P. Ertem, A. M. Maes, S. Seifert, A. M. Herrng, E. B. Coughlin, Thermally cross-linked anion exchange membranes from solvent processable isoprene containing ionomers, Macromolecules, 48(2015), 3, 655-662.
    [47] S. K. Tuli, A. L. Roy, R. A. Elgammal, T. A. Zawodzinski, T. Fujiwara, Polystyrene-based anion exchange membranes via click chemistry: Improved properties and AEM performance, Polym. Int. 67(2018), 9, 1302-1312.
    [48] C. Lin, J. Wang, G. Shen, J. Duan, D. Xie, F. Cheng, Y. Zhang, S. Zhang, Construction of crosslinked polybenzimidazole-based anion exchange membranes with ether-bond-free backbone, J. Membr. Sci. 590(2019), 117303.
    [49] J. Hao, Y. Jiang, X. Gao, W. Lu, Y. Xiao, Z. Shao, B. Yi, Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes, J. Membr. Sci. 548(2018), 1-10.
    [50] J. Pan, L. Zhu, J. Han, M. A. Hickner, Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks, Chem. Mater. 27(2015), 19, 6689-6698.
    [51] L. Zhu, T. J. Zimudzi, N. Li, J. Pan, B. Lin, M. A. Hickner, Crosslinking of comb-shaped polymer anion exchange membranes via thiol–ene click chemistry, Polym. Chem. 7(2016),14, 2464-2475.
    [52] X. Zhang, Y. Cao, M. Zhang, Y. Huang, Y. Wang, L. Liu, N. Li, Enhancement of the mechanical properties of anion exchange membranes with bulky imidazolium by “thiol-ene” crosslinking, J. Membr. Sci. 596(2020), 117700.
    [53] W. Lu, G. Zhang, J. Li, J. Hao, F. Wei, W. Li, J. Zhang, Z. -G. Shao, Polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with quaternary 1,4-diazabicyclo (2.2.2) octane groups as high-performance anion exchange membrane for fuel cells, J. Power Sources, 296(2015), 204-214.
    [54] R. E. Coppola, D. Herranz, R. Escudero-cid, N. B. D. Accorso, P. Ocon, G. C. Abuin, Polybenzimidazole-crosslinked-poly(vinyl benzyl chloride) as anion exchange membrane for alkaline electrolyzers, Renewable Energy, 157(2020), 71-82.
    [55] J. Han, Y. Peng, B. Lin, Y. Zhu, Z. Ren, L. Xiao, L. Zhuang, Hydrophobic side-chain attached polyarylether-based anion exchange membranes with enhanced alkaline stability, ACS Appl. Energy Mater. 2(2019), 11, 8052-8059.
    [56] C. Lin, X. Liu, Q. Yang, H. Wu, F. Liu, Q. Zhang, A. Zhu, Q. Liu, Hydrophobic side chains to enhance hydroxide conductivity and physicochemical stabilities of side-chain-type polymer AEMs, J. Membr. Sci. 585(2019), 90-98.
    [57] A. S. Rewar, H. D. Chaudhari, R. Illathvalappil, K. Sreekumar, V. K. Kharvl, New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties, J. Mater. Chem. A. 2(2014), 35, 14449-14458.
    [58] J. Li, S. Wang, F. Liu, H. Chen, X. Wang, T. Mao, D. Wang, G. Liu, Z. Wang, Flame-retardant AEMs based on organic-inorganic composite polybenzimidazole membranes with enhanced hydroxide conductivity, J. Membr. Sci. 591(2019), 117306.
    [59] C. X. Lin, H. Y. Wu, L. Li, X. Q. Wang, Q. G. Zhang, A. M. Zhu, Q. L. Liu, Anion conductive triblock copolymer membranes with flexible multication side chain, ACS Appl. Mater. Interfaces, 10(2018), 21, 18327-18337.
    [60] C. H. Lee, H. B. Park, Y. M. Lee, R. D. Lee, Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application, Ind. Eng. Chem. Res. 44( 2005), 20, 7617-7626.
    [61] J. Han, K. Kim, J. Kim, S. Kim, S. -W. Choi, H. Lee, J. -J. Kim, T. -H. Kim, Y. -E. Sung, J. -C. Lee, Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application, J. Membr. Sci. 579(2019), 70-78.
    [62] N. Ziv, D.R. Dekel, A practical method for measuring the true hydroxide conductivity of anion exchange membranes, Electrochem. Commun. 88(2018), 109-113.
    [63] A. C. Tibbits, L. E. Mumper, C. J. Kloxin, Y. S. Yan, A single-step monomeric photo-polymerization and crosslinking via thiol-Ene reaction for hydroxide exchange membrane fabrication, J. Electrochem. Soc. 162(2015), 10, F1206-F1211.
    [64] H. Ma, H. Zhu, Z. Wang, Highly alkaline stable anion exchange membranes from nonplanar polybenzimidazole with steric hindrance backbone, J. Polym. Sci. Part A: Polym. Chem. 57(2019), 10, 1087-1096.
    [65] J. Ran, L. Ding, D. Yu, X. Zhang, M. Hu, L. Wu, T. Xu, A novel strategy to construct highly conductive and stabilized anionic channels by fluorocarbon grafted polymers, J. Membr. Sci. 549(2018), 631-637.
    [66] J. Pan, J. Han, L. Zhu, M. A. Hickner, Cationic side-chain attachment to poly(Phenylene oxide) backbones for chemically stable and conductive anion exchange membranes, Chem. Mater. 29(2017), 12, 5321-5330.
    [67] Y. Liu, J. Zhou, J. Hou, Z. Yang, T. Xu, Hyperbranched polystyrene copolymer makes superior anion exchange membrane, ACS Appl. Polym. Mater. 1(2018), 1, 76-82.
    [68] A. N. Lai, L. S. Wang, C. X. Lin, Y. Z. Zhuo, Q. G. Zhang, A. M. Zhu, Q. L. Liu, Phenolphthalein-based poly(arylene ether sulfone nitrile)s multiblock copolymers as anion exchange membranes for alkaline fuel cells, ACS Appl. Mater. Interfaces, 7(2015), 15, 8284-8292.
    [69] H. -S. Dang, P. Jannasch, Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes, Macromolecules, 48(2015), 16, 5742-5751.
    [70] C. Yang, L. Liu, X. Han, Z. Huang, J. Dong, N. Li, Highly anion conductive, alkyl-chain-grafted copolymers as anion exchange membranes for operable alkaline H2/O2 fuel cells, J. Mater. Chem. A. 5( 2017), 21, 10301-10310.
    [71] N. Li, T. Yan, Z. Li, T. T. -Albrecht, W. H. Binder, Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes, Energy Environ. Sci. 52012), 7, 7888-7892.
    [72] Y. Luo, J. Guo, Y. Liu, Q. Shao, C. Wang, D. Chu, Copolymerization of methyl methacrylate and vinylbenzyl chloride towards alkaline anion exchange membrane for fuel cell applications, J. Membr. Sci. 423-424(2012), 209-214.
    [73] X. Li, G. Qian, X. Chen, B. C. Benicewicz, Synthesis and characterization of a new fluorine-containing polybenzimidazole (PBI) for proton-conducting membranes in fuel cells, fuel cells, 13(2013), 5, 832-842.
    [74] X. Li, X. Chen, B.C. Benicewicz, Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs) J. Power Sources, 243(2013), 796-804.
    [75] k. Hwang, J. -H. Kim, S. -Y. Kim, H. Byum, Preparation of polybenzimidazole-based membranes and their potential applications in the fuel cell system, Energies, 7(2014), 3, 1721-1732.
    [76] J. -C. Chen, P. -Y. Chen, Y. -C. Liu, K. -H. Chen, Polybenzimidazoles containing bulky substituents and ether linkages for high-temperature proton exchange membrane fuel cell applications, J. Membr. Sci. 513( 2016), 270-279.
    [77] L. Zhu, T. J. Zimudzi, N. Li, J. Pan, B. Lin, M. A. Hickner, Crosslinking of comb-shaped polymer anion exchange membranes via thiol–ene click chemistry, Polym. Chem. 7(2016), 14, 2464-2475.
    [78] K. L. Killops, L. M. Campos, C. J. Hawker, Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene “click” chemistry, J. Am. Chem. Soc. 130(2008), 15, 5062-5064.
    [79] R. Nagarjuna, M.S.M. Saifullah, R. Ganesan, Oxygen insensitive thiol–ene photo-click chemistry for direct imprint lithography of oxides, RSC Advances, 8(2018), 21, 11403-11411.
    [80] B. Lin, F. Xu, F. Chu, Y. Ren, J. Ding, F. Yan, Bis-imidazolium based poly(phenylene oxide) anion exchange membranes for fuel cells: the effect of cross-linking, J. Mater. Chem. A. 7(2019), 21, 13275-13283.
    [81] H. Ma, H. Zhu, Z. Wang, Highly alkaline stable anion exchange membranes from nonplanar polybenzimidazole with steric hindrance backbone, J. Polym. Sci. Part A: Polym. Chem. 57(2019), 10, 1087-1096.
    [82] N. Chen, H. Zhu, Y. Chu, R. Li, Y. Liu, F. Wang, Cobaltocenium-containing polybenzimidazole polymers for alkaline anion exchange membrane applications, Polym. Chem. 8(2017), 8, 1381-1392.
    [83] G. Das, C. Y. Kim, D. H. Kang, B. H. Kim, H. H. Yoon, Quaternized polysulfone cross-linked N,N-dimethyl chitosan-based anion-conducting membranes, Polymers (Basel), 11(2019), 3, 512.
    [84] S. Zhang, X. Zhu, C. Jin, Development of a high-performance anion exchange membrane using poly(isatin biphenylene) with flexible heterocyclic quaternary ammonium cations for alkaline fuel cells, J. Mater. Chem. A. 7(2019), 12, 6883-6893.
    [85] J. Han, L. Zhu, J. Pan, T. J. Zimudzi, Y. Wang, Y. Peng, M. A. Hickner, L. Zhuang, Elastic long-chain multication cross-linked anion exchange membranes, Macromolecules, 50(2017), 8, 3323-3332.
    [86] V. Vijayakumar, S.Y. Nam, Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells, J. Ind. Eng. Chem. 70(2019), 70-86.
    [87] C. Hu, Q. Zhang, C. Lin, Z. Lin, L. Li, F. Soyekwo, A. Zhu, Q. Liu, Multi-cation crosslinked anion exchange membranes from microporous Tröger's base copolymers, J. Mater. Chem. A. 6(2018), 27, 13302-13311.
    [88] C. Chung, M. Lee, E.K. Choe, Characterization of cotton fabric scouring by FT-IR ATR spectroscopy, Carbohydr. Polym. 58(2004), 4, 417-420.
    [89] M. M. Hossen, K. Artyushkova, P. Atanassou, A. Serov, Synthesis and characterization of high performing Fe-N-C catalyst for oxygen reduction reaction (ORR) in alkaline exchange membrane fuel cells, J. Power Sources, 375(2018), 214-221.
    [90] G. Wang, W. Li, B. Huang, L. Xiao, J. Lu, L. Zhuang, Alkaline polymer electrolyte membranes for fuel cell applications, Chem. Soc. Rev. 42(2013), 13, 5768-87.
    [91] K. Yassin, I. G. Rasin, S. Brandon, D. R. Dekel, Quantifying the critical effect of water diffusivity in anion exchange membranes for fuel cell applications, J. Membr. Sci. 608(2020), 118206.
    [92] I. Staffell, D. Scamman, A. V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, N. Shan, K. R. Ward, The role of hydrogen and fuel cells in the global energy system, Energy Environ. Sci. 12(2019), 2, 463-491.
    [93] A. Jasti, V.K. Shahi, Multi-block poly(arylene ether)s containing pre-choloromethylated bisphenol: anion conductive ionomers, J. Mater. Chem. A. 1(2013), 20, 6134-6137.
    [94] W. Liu, L. Liu, J. Liao, L. Wang, N. Li, Self-crosslinking of comb-shaped polystyrene anion exchange membranes for alkaline fuel cell application, J. Membr. Sci. 536(2017), 133-140.
    [95] S. P. Ertem, T. -H. Tsai, M. M. Donahue, W. Zhang, H. Sarode, Y. Liu, S. Seifert, A. M. Herring, E. B. Coughlin, Photo-cross-linked anion exchange membranes with improved water management and conductivity, Macromolecules, 49(2016), 1, 153-161.
    [96] E. Bakangura, C. Cheng, L Wu, Y. He, X. Ge, J. Ran, K. Emmanuel, T. Xu, Highly charged hierarchically structured porous anion exchange membranes with excellent performance, J. Membr. Sci. 515( 2016), 154-162.
    [97] C. X. Lin, H. Y. Wu, L. Li, X. Q. Wang, Q. G. Zhang, A. M. Zhu, Q. L. Liu, Anion conductive triblock copolymer membranes with flexible multication side chain, ACS Appl. Mater. Interfaces, 10(2018), 21, 18327-18337.
    [98] D. Guo, A. N. Lai, C. X. Lin, Q. G. Zhang, A. M. Zhu, Q. L. Liu, Imidazolium-functionalized poly(arylene ether sulfone) anion-exchange membranes densely grafted with flexible side chains for fuel cells, ACS Appl. Mater. Interfaces, 8(2016), 38, 25279-25288.
    [99] N. Li, Y. Leng, M. A. Hickner, C. -Y. Wang, Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells, J. Am. Chem. Soc. 135(2013), 27, 10124-10133.
    [100] Y. He, J. Zhang, X. Liang, M. A. Shehzad, X. Ge, Y. Zhu, M. Hu, Z. Yang, L. Wu, T. Xu, Achieving high anion conductivity by densely grafting of ionic strings, J. Membr. Sci. 559(2018), 35-41.
    [101] B. Bauer, H. Strathmann, F. Effenberger, Anion-exchange membranes with improved alkaline stability, Desalination, 79(1990), 2, 125-144.
    [102] K. F. L. Hagesteijn, S. Jiang, B. P. Ladewig, A review of the synthesis and characterization of anion exchange membranes, J. Mater. Sci. 53(2018), 16, 11131-11150.
    [103] N. Li, L. Wang, M. Hickner, Cross-linked comb-shaped anion exchange membranes with high base stability, Chem Commun (Camb), 50(2014), 31, 4092-5.
    [104] C. X. Lin, X. L. Huang, D. Guo, Q. G. Zhang, A. M. Zhu, M. L. Ye, Q. L. Liu, Side-chain-type anion exchange membranes bearing pendant quaternary ammonium groups via flexible spacers for fuel cells, J. Mater. Chem. A. 4(2016), 36, 13938-13948.
    [105] J. Ran, L. Wu, Y. Ru, M. Hu, L. Din, T. Xu, Anion exchange membranes (AEMs) based on poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and its derivatives, Polym. Chem. 6( 2015), 32, 5809-5826.
    [106] S. Xu, G. Zhang, Y. Zhang, C. Zhao, L. Zhang, M. Li, J. Wang, N. Zhang, H. Na, Cross-linked hydroxide conductive membranes with side chains for direct methanol fuel cell applications, J. Mater. Chem. 22(2012), 26, 13295-13302.
    [107] A. N. Mondal, Y. He, L. Ge, L. Wu, K. Emmanuel, M. M. Hossain, T. Xu, Preparation and characterization of click-driven N-vinylcarbazole-based anion exchange membranes with improved water uptake for fuel cells, RSC Advances, 7(2017), 47, 29794-29805.
    [108] Z. G. Abdi, T. -H. Chiu, Y. -Z. Pan, J. -C. Chen, Anion exchange membranes based on ionic polybenzimidazoles crosslinked by thiol-ene reaction, React. Funct. Polym. 156(2020), 104719.
    [109] L. Zhu, T. J. Zimudzi, Y. Wang, X. Yu, J. Pan, J. Han, D. I. Kushner, L. Zhuang, M. A. Hickner, Mechanically robust anion exchange membranes via long hydrophilic cross-inlkers, Macromolecules, 50(2017), 6, 2329-2337.
    [110] M. M. Nasef, S. A. Gursel, D. Karabelli, O. Guven, Radiation-grafted materials for energy conversion and energy storage applications, Progr. Polym. Sci. 63(2016), 1-41.
    [111] G. He, Z. Li, J. Zhao, S. Wang, H. Wu, M. D. Guiver, Z. Jiang, Nanostructured ion-exchange membranes for fuel cells: Recent advances and perspectives, Adv. Mater. 27(2015), 36, 5280-5295.
    [112] S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, Y. S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources, 375(2018), 170-184.
    [113] D.R. Dekel, Review of cell performance in anion exchange membrane fuel cells, J. Power Sources, 375(2018), 158-169.
    [114] J. S. Olsson, T. H. Pham, P. Jannasch, Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity, Adv. Funct. Mater. 28(2018), 2, 1702758.
    [115] A. N. Lai, P. C. Hu, R. Y. Zhu, Q. Yin, S. F. Zhou, Comb-shaped cardo poly(arylene ether nitrile sulfone) anion exchange membranes: Significant impact of nitrile group content on morphology and properties, RSC Advances, 10(2020), 26, 15375-15382.
    [116] S. Sung, T. S. Mayadevi, K. Min, J. Lee, J. E. Chae, T. -H. Kim, Crosslinked PPO-based anion exchange membranes: The effect of crystallinity versus hydrophilicity by oxygen-containing crosslinker chain length, J. Membr. Sci. 619(2021), 118774.
    [117] K. Yang, H. Ni, T. Shui, X. Chi, W. Chen, Q. Liu, J. Xu, Z. Wang, High conductivity and alkali-resistant stability of imidazole side chain crosslinked anion exchange membrane, Polymer, 211(2020), 123085.
    [118] A. Ding, J. Zhou, X. Cheng, C. Shen, S. Gao, Quaternized poly (2,6-dimethyl-1,4-phenylene oxide) crosslinked by tertiary amine and siloxane for anion exchange membranes, J. Appl. Polym. Sci. 138(2021), 15, 50201.
    [119] A. K. Mohanty, Y. E. Song, B. Jung, J. R. Kim, N. Kim, H. -J. Paik, Partially crosslinked comb-shaped PPO-based anion exchange membrane grafted with long alkyl chains: Synthesis, characterization and microbial fuel cell performance, Inter. J. Hydrogen Energy, 45(2020), 51, 27346-27358.
    [120] X. Du, H. Zhang, Y. Yuan, Z. Wang, Constructing micro-phase separation structure to improve the performance of anion-exchange membrane based on poly(aryl piperidinium) cross-linked membranes, J. Power Sources, 487(2021), 229429.
    [121] F. Xu, Y. Su, B. Lin, Progress of alkaline anion exchange membranes for fuel cells: The effects of micro-phase separation, Front. Mater. 7(2020), 4.
    [122] X. Du, Z. Wang, H. Zhang, W. Liu, J. Xu, Constructing micro-phase separation structure by multi-arm side chains to improve the property of anion exchange membrane. Inter. J. Hydrogen Energy, 45(2020), 35, 17916-17926.
    [123] J. Ran, L. Ding, C. Chu, X. Liang, T. Pan, D. Yu, T. Xu, Highly conductive and stabilized side-chain-type anion exchange membranes: Ideal alternatives for alkaline fuel cell applications, J. Mater. Chem. A. 6(2018), 35, 17101-17110.
    [124] C. X. Lin, Y. Z. Zhuo, E. N. Hu, Q. G. Zhang, A. M. Zhu, Q. L. Liu, Crosslinked side-chain-type anion exchange membranes with enhanced conductivity and dimensional stability, J. Membr. Sci. 539(2017), 24-33.
    [125] C. X. Lin, Y. Z. Zhuo, A. N. Lai, Q. G. Zhang, A. M. Zhu, M. L. Ye, Q. L. Liu, Side-chain-type anion exchange membranes bearing pendent imidazolium-functionalized poly(phenylene oxide) for fuel cells, J. Membr. Sci. 513(2016), 206-216.
    [126] W. You, K. J. T. Noonan, G. W. Coates, Alkaline-stable anion exchange membranes: A review of synthetic approaches, Progr. Polym. Sci. 100(2020), 101177.
    [127] K. Yang, S. Li, S. Zhang, X. Cao, T. A. Sherazi, X. Liu, Preparation and properties of anion exchange membranes with exceptional alkaline stable polymer backbone and cation groups, J. Membr. Sci. 596(2020), 117720.
    [128] Q. X. Wu, Z. F. Pan, L. An, Recent advances in alkali-doped polybenzimidazole membranes for fuel cell applications, Renew. Sustain. Energy Rev. 89(2018), 168-183.
    [129] R. I. Masel, S. D. Sajjad, M.J. Pellerite, Method of making an anion exchange membrane, 2018, Google Patents.
    [130] L. T. Nhung, I. Y. Kim, Y. S. Yoon, Quaternized chitosan-based anion exchange membrane composited with quaternized poly(vinylbenzyl chloride)/polysulfone blend, Polymers, 12(2020), 11, 2714.
    [131] L. Zeng, T. S. Zhao, An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains, J. Power Sources, 303(2016), 354-362.
    [132] A. M. A. Mahmoud, A. M. M. Elsaghier, K. Otsuji, K. Miyatake, High hydroxide ion conductivity with enhanced alkaline stability of partially fluorinated and quaternized aromatic copolymers as anion exchange membranes, Macromolecules, 50(2017), 11, 4256-4266.
    [133] D. Liu, M. Xu, M. Fang, J. Chen, L. Wang, Branched comb-shaped poly(arylene ether sulfone)s containing flexible alkyl imidazolium side chains as anion exchange membranes, J. Mater. Chem. A. 6(2018), 23, 10879-10890.
    [134] Q. Yang, C. Xiao, F. H. Liu, L. Li, Q. G. Zhang, A. M. Zhu, Q. L. Liu, Poly (2,6-dimethyl-1,4-phenylene oxide)/ionic liquid functionalized graphene oxide anion exchange membranes for fuel cells, J. Membr. Sci. 552(2018), 367-376.
    [135] Z. Wang, Z. Li, N. Chen, C. Lu, F. Wang, H. Zhu, Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly (styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications, J. Membr. Sci. 564(2018), 492-500.
    [136] L. Wang, Z. Liu, Y. Liu, L. Wang, Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells, J. Membr. Sci. 583(2019), 110-117.
    [137] L. Liu, X. Chu, J. Liao, Y. Huang, Y. Li, Z. Ge, M. A. Hickner, N. Li, Tuning the properties of poly(2,6-dimethyl-1,4-phenylene oxide) anion exchange membranes and their performance in H2/O2 fuel cells, Energy Environ. Sci. 11(2018), 2, 435-446.
    [138] Y. Z. Zhuo, A. L. Lai, Q. G. Zhang, A. M. Zhu, M. L. Ye, Q. L. Liu, Enhancement of hydroxide conductivity by grafting flexible pendant imidazolium groups into poly(arylene ether sulfone) as anion exchange membranes, J. Mater. Chem. A. 3(2015), 35, 18105-18114.
    [139] M. Pellerite, M. Kaplun, C. H. Thompson, K. A. Lewinski, N. Kunz, T. Gregar, J. Baetzold, D. Lutz, M. Quast, Z. Liu, H. Yang, S. D. Sajjad, Y. Gao, R. Masel, Imidazolium-functionalized polymer membranes for fuel cells and electrolyzers, ECS Transactions, 80(2017), 8, 945-956.

    無法下載圖示 全文公開日期 2024/08/04 (校內網路)
    全文公開日期 2031/08/04 (校外網路)
    全文公開日期 2026/08/04 (國家圖書館:臺灣博碩士論文系統)
    QR CODE