簡易檢索 / 詳目顯示

研究生: 何光翎
Guang-ling He
論文名稱: 摩擦補償對於壓電定位平台之精密控制影響研究
The Investigation of Friction Compensation Control on a Linear Piezoelectric Motor (LPM) Positioning Table
指導教授: 黃緒哲
Shiuh-jer Huang
口試委員: 黃安橋
An-chyau Huang
顏木田
Mu-tian Yan
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 53
中文關鍵詞: 適應控制器函數近似法摩擦補償壓電馬達精密定位
外文關鍵詞: piezoelectric actuator, micro-positioning, adaptive control, friction compensation
相關次數: 點閱:292下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用之壓電陶瓷馬達具顯著之非線性摩擦特性,本論文將對摩擦模型進行探討,並針對模型不確定性進行修正。然而摩擦模型仍存在一些不確定性與時變特性,因此本文中採用一適應控制器,利用函數近似法(Function Approximation Technique, FAT)將系統之未知時變參數以有限項的正規直交函數近似之,並以Lyapunov法則為基礎設計適應更新律,並證明系統的穩定性。本研究採用兩種控制器設計方法,第一種控制器係在知道系統模型與部份參數時,利用FAT函數近似法解決模型之估測誤差與系統時變特性;第二種控制器係在不知道系統確切模型時,如何利用FAT控制器來設計,解決不易取得適當模型與參數的困擾。


    In this paper, the friction model of a X-Y table actuated by linear-piezoelectric motors is investigated. This positioning table has slowly nonlinear friction properties, especially at the slow motion phase. Since the friction behavior is time-varying and difficult to model, any friction model will has modeling error or system uncertainty. An adaptive controller is then proposed to deal with these problems. This controller employs the function approximation technique to simulate this modeling error and uncertainty. It is expanded into finite combinations of orthonormal basis functions. Adaptive laws and system stability can be derived based on the Laypunov-like design strategy. This paper presents two controller design methods. One is employed the FAT scheme to deal with modeling errors and time-varying properties accompanied with estimated system dynamics model and friction models. The other is to use the FAT scheme to design a model free controller, when the estimated system model is not properly. Experiment results are used to evaluate the control performance of the proposed control strategies.

    摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖表索引 V 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 1 第二章 壓電陶瓷馬達介紹 4 2.1 壓電特性簡介與壓電致動器分類 4 2.2 壓電陶瓷馬達運動原理 5 第三章 摩擦力與摩擦模型 7 3.1 摩擦力介紹 7 3.2 動態摩擦力模型(LuGre model)與摩擦力估測 10 3.3 摩擦補償模型測試 15 第四章 壓電馬達控制器設計 20 4.1 一維移動平台之動態方程式推導 20 4.2 控制器設計 21 4.2.1 FAT適應控制器設計 21 4.2.2 摩擦模型加入FAT補償之適應控制器設計 24 4.3 函數近似誤差對系統穩定性之影響 25 第五章 實驗設備與實驗結果 27 5.1 實驗架構 27 5.1.1 系統各部份介紹 28 5.2 實驗結果 30 5.2.1 PID控制器之實驗結果 31 5.2.2 摩擦模型加入FAT補償之適應控制器之實驗結果 34 5.2.3 FAT適應控制器之實驗結果 38 第六章 結論與建議 48 6.1 結論 48 6.2 未來發展與建議 48 參考文獻 49 作者簡歷 52 授權書 53

    [1] B. Armstrong-Hélouvry, P. Dupont, and C. Canudas de Wit, ”A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica,vol. 30,no. 7, pp.1083-1183, 1994.

    [2] C. Canudas de Wit, H. Olsson, K. J. Ǻström, and P. Lischinsky, ”A new model for control of systems with friction,” IEEE Trans. Automat. Contr., vol. 40, no. 3, pp. 419-425, 1995.

    [3] Basilio Bona and Marina Indri, “Friction compensation in robotics: an overview,” Proceeding of the 44th IEEE Conference on Decision and Control, pp. 4360-4367, 2005.

    [4] G. Liu, “Decomposition-based friction compensation of mechanical systems,” Mechatronics, vol. 12, pp. 755-769, 2002.

    [5] Y. Zhang, G. Liu and A. A. Goldenberg, “Friction compensation with estimated velocity,” Proceedings of IEEE International Conference on Robotics and Automation, Washington, vol. 3, pp. 2650-2655, 2002.

    [6] Min-Seok Kim, Sung-Chong Chung, “Friction identification of ball-screw driven servomechanisms through the limit cycle analysis,” Mechatronics, vol. 16, pp. 131-140,2006.

    [7] Jeong Ju Choi, Seong ik Han, Jong Shik Kim, ”Development of a novel dynamic friction model and precise tracking control using adaptive back-stepping sliding mode controller,” Mechatronics, vol. 16, pp. 97-104,2006.

    [8] M. R. Popovic, D. M. Gorinevsky, and A. A. Goldenberg, “High-precision positioning of a mechanism with nonlinear friction using a fuzzy logic pulse controller,” IEEE Trans. Contr. Syst. Technol. vol. 8, no 1, pp. 151-158, Jan. 2000.

    [9] Y. L. Wang, X. L. Huang, L. J. Zhao, and T. Y. Chai, “Friction compensating modeling and control based on adaptive fuzzy system,” IEEE 8th International Conference on Control, Automation, Robotics and Vision Kunming, China, vol. 3, pp. 2041-2045, Aug. 2004.

    [10] Jason T. Teeter, Mo-yuen Chow, and James J. Brickley Jr., “A novel fuzzy friction compensatin approach to improve the performance of a DC motor control system,” IEEE Trans. Ind. Electron., vol. 43, no. 1, pp. 113-120, 1996.

    [11] Denis Garagić, Krishnaswamy Srinivasan, “Adaptive friction compensation for precision machine tool drive,” Control Engineering Practice, vol. 12, pp. 1451-1464, 2004.

    [12] T. Senjyu, T. Kashiwagi, and K. Uezato, “Position control of ultrasonic motors using MRAC and dead-zone compensation with fuzzy inference,” IEEE Trans. Power Electron. Vol. 17, no. 2, pp. 265-271, 2002.

    [13] Chih-Min Lin, and Ya-Fu Peng, “Adaptive CMAC-based supervisory control for uncertain nonlinear systems,” IEEE Trans. Syst., man, Cybern. B, vol.34, no.2, pp.1248-1260, 2004.

    [14] Rong-Jong Wai, Faa-Jeng Lin, Rou-Yong Duan, Kuan-Yun Hsieh, and Jeng-Dao Lee, “Robust fuzzy neural network control for linear ceramic motor drive via backstepping design technique,” IEEE Trans. Fuzzy Syst., vol. 10, no. 1, pp. 102-112, 2002.

    [15] K. Mainali, S. K. Panda, J. X. Xu, T. Senju, “Repetitive position tracking performance enhancement of linear ultrasonic motor with sliding mode-cum-iterative learning control,” Mechatronics, ICM '04. Proceedings of the IEEE International Conference, pp. 352-357, 2004.

    [16] K. K. Tan, T. H. Lee, H. X. Zhou, “Micro-positioning of linear-piezoelectric motors based on a learning nonlinear PID controller,” IEEE/ASME Trans. Mechatron., vol. 6, no. 4, pp. 428-436, 2001.

    [17] A. C. Huang and Y. C. Chen, “Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties,” IEEE. Trans. On Control Systems Technology, vol. 12, No. 5,2004.

    [18] 梁鵬旭,“次微米級伺服平台之控制研究”,國立台灣科技大學機械工程系,碩士學位論文,2002。

    [19] 黃安橋,”適應控制理論”,上課講義,2004

    [20] 蔡明祺、蕭仕偉、謝旻甫,” 超音波馬達”,科學發展月刊367期,2003年7月。

    [21] 馬達科技學習網,http://emotors.ncku.edu.tw/motor_learn/e_news/030115/kip.htm (6/15/2006)

    [22] 馮榮豐、楊竣翔、韓長富,”磁滯與摩擦力考慮的奈米定位”,物理雙月刊二十五券三期,2003 。

    [23] 寶迪企業股份有限公司網頁,http://www.mtt.com.tw (6/15/2006)

    [24] C. Canudas De Wit and P. Lischinsky, “Adaptive friction compensation with partially known dynamic friction model,” Int. J. Adapt. Control Signal Process., vol. 11, pp. 65-80, 1997.

    [25] Li Xu and Bin Yao, ”Adaptive robust control of mechanical systems with nonlinear dynamic friction compensation,” Proceedings of the American Control conference, Chicago, Illinois, pp2595-2599, June 2000.

    [26] J. J. E. Slotine and W. Li, ”Applied nonlinear control”, Prentice Hall,pp.122-125,1991.

    QR CODE