簡易檢索 / 詳目顯示

研究生: 羅貫中
Kuan-Jhong Luo
論文名稱: 伊利土與高嶺土電動化學灌漿比較之研究
A Study of the comparison of Electrokinetic chemical treatment of Kaolinite and Illite
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 簡紹琦
Shao-Chi Chien
鄧福宸
Fu-chen Teng
歐章煜
Chang-Yu Ou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 120
中文關鍵詞: 電動化學灌漿伊利土高嶺土
外文關鍵詞: Electrokinetic chemical treatment, Illite, Kaolinite
相關次數: 點閱:130下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電滲透化學灌漿試驗運用在高嶺土已能得到一良好之圓錐灌入改良強度,但其應用於台北黏土方面成效仍有限。本研究乃先從台北黏土中含量最多的伊利土進行研究,並藉由伊利土與高嶺土在電滲透化學灌漿下之行為互相比較,探討伊利土之電滲透化學灌漿行為。實驗共分為四種面向 (1) 基礎伊利土電滲透化學灌漿行為之探討; (2) 不同灌漿順序之比較;(3) 適宜之灌漿時間及濃度; (4)無灌入膠結材之基本電滲強度。研究發現,伊利土由於陽離子交換能力較高嶺土為大,故電滲透過程中十分難以使得漿液順利灌入,縱然最後使用提高初始pH值及改變灌入順序,並搭配長時數之灌漿流程,最終只能使得正極處 (NA)、遠離正極處 (FA) 擁有高CPT強度,但是位於土體其餘部分卻仍然無法提高其改良強度。欲提高伊利土之改良效率可從各種化學溶液對於伊利土之行為作基礎研究,亦可從此次試驗之灌漿順序為基礎做後續最佳灌漿量之研究。


    Recent researches indicate that electroosmotic treatment can effectively improve the cone penetration strength of kaolinite soil, but not Taipei silty clay. Taipei silty clay was consist of high content of illite soil. The objective of this study is thus to investigate the efficacy of electroosmotic chemical injection between illite soil and kaolinite. Four phases in electroosmotic test were investigated: (1). Basic electroosmotic chemical treatment for Illite soil, (2). Different sequences for injecting chemical solutions, (3). Determined a suitable treatment time and concentration of chemical solutions, (4). Injected without chemical solutions. Results show that the electroosmotic treatment could not efficiently improve the cone penetration strength of illite soil compared to kaolinite soil. The reason for this phenomenon was due to high cation exchange capability (C.E.C.) value. Increasing the pH value of initial soil condition also could not increase the performance of the electroosmotic treatment. A limit improvement area could be observed in the areas near anode (NA) and far away from anode (FA) when sodium silicate was injected before CaCl2. Furthermore, to enhance the efficacy of electroomosis on illte soil the basic mechanism of each chemical solution needs to be studied. Investigate various injection sequences that can increase the efficacy of injection of chemical solutions.

    目錄 中文摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 VIII 表目錄 XII 第一章 緒論 13 1.1 研究動機與目的 13 1.2 研究方法 14 1.3 論文內容 14 第二章 文獻回顧 15 2.1 前言 15 2.2 電動原理 (Electrokinetic theory) 15 2.2.1 電滲透現象 (Electroosmosis) 15 2.2.2 電子遷移現象 (Electromigration) 16 2.3 電化學灌漿效應 (Electrochemical Effects) 16 2.3.1 電解效應 (Electrolysis Effect) 16 2.3.2 陽離子交換反應 (Cation Exchange Reaction) 17 2.4 利用鈣離子進行土壤改良 18 2.5 利用水玻璃溶液進行土壤改良 21 2.6 使用不同化學漿液搭配進行ECT試驗 23 2.6.1 灌入水玻璃前先行灌入氯化鈣 23 2.6.2 灌入水玻璃前先行灌入氫氧化鉀溶液 28 2.7 電滲透係數 (Electro-osmosis permeability) 32 2.8 綜合討論 42 第三章 試驗設備、規畫與流程 43 3.1 實驗計畫說明 43 3.2 電滲透化學灌漿試驗 49 3.2.1 灌漿模主體設備 49 3.2.2 加壓設備 51 3.2.3 電源供應器 52 3.2.4 即時監測計讀系統 52 3.2.5 室內圓錐貫入儀 (CPT) 54 3.2.6 電子式pH測量計 57 3.2.7 灌漿瓶設備 57 3.2.8 白金電極鈑 58 3.2.9 去離子水 59 3.2.10 試驗材料 59 3.2.11 灌入之化學溶液 60 3.2.12 試驗流程 62 3.3 檢測項目及說明 65 3.3.1 室內圓錐貫入試驗 65 3.3.2 含水量試驗 66 3.3.3 pH值量測 66 3.3.4 感應耦合電漿原子放射光譜儀 (ICP-AES) 67 第四章、試驗結果與討論 69 4.1 前言 69 4.2 烘乾台北黏土電滲化學灌漿試驗結果 69 4.3 伊利土之基本電滲透性質試驗 73 4.4 先行灌入氫氧化鉀試驗結果 77 4.4.1 不同濃度之氫氧化鉀試驗 77 4.4.2 不同灌入順序之比較 82 4.4.3 最佳氫氧化鉀灌入時間試驗 84 4.5 先灌入氯化鈣後續灌入水玻璃之試驗結果 90 4.6 先灌入水玻璃後續灌入氯化鈣之試驗結果 94 4.7 無使用膠結材灌漿之強度 102 第五章 結論與建議 111 5.1 結論 111 5.2 建議 113 參考文獻 114 附錄A 117 各組試驗pH值數據表 117 附錄B 118 各組試驗含水量數據表(%) 118 附錄C 119 ICP試驗資料(%) 119 附錄D 120 試驗灌入漿液量(mL) 120

    1. ASTM D2216. (2010). “Standard test methods for aboratory determination of water (moisture) content of soil and rock by mass.” ASTM International, West Conshohocken, PA, U.S.A.
    2. ASTM D5778. (2012). “Standard test method for performing electronic friction cone and piezocone penetration testing of soils.” ASTM International, West Conshohocken, PA, U.S.A.
    3. ASTM D4972. (2013). “Standard test methods for pH of soils.” ASTM International, West Conshohocken, PA, U.S.A.
    4. Asadi, A., Bujang, B.K., Huat, H., Hamed, N., Keykhah, A. (2013). Theory of electroosmosis in soil. Department of Civil Engineering, University Putra Malasia, 43400 UPM, Serdang, Selangor, Malaysia.
    5. Asadi, A., Bujang, B.K., Huat, H., Moayedi, N., Shariatmadari, A., Parsaie(2011). Electro-osmotic permeability coefficient of peat with different degree of humification, Department of Civil Engineering, Science and Research Branch of Esfahan, Islamic Azad University, Esfahan, Iran.
    6. Asadi, A., Bujang B.K., Huat, M.M., Hassim, Thamer A. Mohamed M.M. Hanafi and N. Shariatmadari(2009), Electroosmotic phenomena in organic soil, Department of Civil Engineering, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia, American Journal of Environmental Science 5(3) : 310-314.
    7. Alshawabkeh, A.N. and Sheahan, T.C. (2003). Soft soil stabilization by ionic injection under electric fields. Ground Improvement, Vol.7, 135-144
    8. Assarson, K. Broms B., Granholm, S. & Paus, K. (1971). Deep stabilization of soft cohesive soils. Linden Alimark, Sweend.
    9. Atesok, G., P. Somasundaran & Morgan (1998) Adsorption properties of Ca2+ on Na-Kaolinite and Its effect on flocculation using ployacrylamides. Henry Krumb School of Mines, Columbia University, New York, NY 1027, Colloid and Surface,32 127-138,U.S.A.
    10. Beddiar, K., Berthaud, Y., Dangla, P., (2004). Role of pH in electro-osmosis: Experimental study on NaCl–water saturated kaolinite. Institut Navier, LMSGC, 2 all’ee Kepler, 77420 Champs-sur-Marne, France.
    11. Diamond, S. & Kinter, E.B. (1965). Mechanisms of soil-lime stabilization-an interpretative review. Highway Reach Record, 92, 83-102.
    12. Mesri, G. (1970). Mechanism controlling the permeability of clays, Department of Civil Engineering, University of Illinois, Urbana, Ill. 61804, U.S.A.
    13. Iler, Ralph K. (1979). The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley Interscience, New York.
    14. ISO-11466, (1995). Soil quality - extraction of trace elements soluble in aqua regia. ISO, GE, Switzerland.
    15. Lee, T.Y. (2010). Optimization of kaolinite soil strength improvement in electroosmotic chemical treatment. Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    16. Lin, Y.S. (2014). Strength improvement and cementation mechanism of kaolinite in electroosmostic chemical treatment. Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    17. Wilson, M.J., Wilson, L. & Patey, I. (2014). The Influence of Individual Clay Minerals on Formation Damage of Reservoir Sandstones: a Critical Review with Some New Insights, Clay Minerals 49, 147-164 James Huton Institute, Aberdeen, UK, and Corex(UK) Ltd, Howe Moss Drive, Aberdeen, UK.
    18. Ou, C.Y., Chien, S.C. & Lee, T.Y. (2013). “Development of a suitable operation procedure for electroosmotic chemical soil improvement.” J. Geotech. Engrg., ASCE 139,993–1000 (published on line).
    19. Ou, C.Y., Chien, S.C. & Yang, C.C. & Chen, C.T. (2015a). “Mechanism of soil cementation by electroosmotic chemical treatment” Appl. Clay Sci., 104, 135–142.
    20. Ou, C.Y., Chien, S.C. & Liu, R.H. (2015b). “A study of the effects of electrode spacing on the cementation region for electro-osmotic chemical treatment” Appl. Clay Sci., 104, 168–181.
    21. Syue, Y.T. (2015). Effects of enhancing efficiency in pozzolanic reaction and injecting water glass on the ECT full improvement. Master’s Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    22. Yukselen, Y., & Kaya, A., (2003) Zeta potential of kaolinite in the presence of alkali, alkaline earth and hydrolysable metal ions, Department of Civil Engineering, Kaynaklar Campus, Dokuz Eylul University, Buca, Izmir, Turkey, Water Air and Soil Pollution.
    23. Lin, Z., Li, P.T., Hou, D., Kuang, Y.L., and Wang, G.G. (2017) Aggregation mechanism of particles: Effect of Ca2+ and polyacry on coagulation and flocculation of coal slime water containing illite, University of Mining and Technology, Xuzhou China.
    24. Thiele, Z. (2008) Acid front migration during the electrolysis of clay. School of Environmental Systems Engineering, The University of Western Australia.

    QR CODE