簡易檢索 / 詳目顯示

研究生: 吳思賢
SSU-HSIEN WU
論文名稱: 電壓對電動力化學灌漿的影響研究
Effect of voltages on electrokinetic chemical treatment
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 簡紹琦
Shao-Chi Chien
鄧福宸
Fu-Chen Tang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 125
中文關鍵詞: 電動力化學灌漿高嶺土電壓電滲透
外文關鍵詞: Electrokinectic chemical treatment, kaolinite, voltage, electroosmosis
相關次數: 點閱:141下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電動力化學灌漿工法中先後灌入氯化鈣、氫氧化鉀、矽酸鈉水溶液以及去離子水,能使高嶺土達到全面改良,但是其試驗期間高達15天(不包含壓密階段),需要適度的減少。為了要降低試驗時間,增加電壓是最直接的方法之一。本研究採取四個階段進行: (一) 於相同氯化鈣灌入時間下施加不同電壓;(二) 增加電壓並同時減少氯化鈣的灌入時間;(三) 以全面改良組合(C72K24NR72H168)為基準,增加一倍電壓及減少一半灌入時間;(四) 觀察灌入矽酸鈉後的強度發展。試著找出電壓對於土壤含水量、pH值分佈、鈣離子分佈以及電壓分佈影響,再驗證增加電壓以減少試驗時間的可行性。研究結果指出電壓的提高能加速電動力以及電化學反應,因此土壤中的pH值在負極與正極分別降低與提高,而鈣離子較快堆積在負極區域。此外,在單純的灌入氯化鈣的條件下,增加電壓以及減少試驗時間的影響結果差異不大。之後,將同時增加電壓與減少時間運用在全面改良組合(C72K24NR72H168)上,強度的增幅在遠離負極處十分疲弱,也說明了,目前還有許多電壓所造成基本的因素需要被討論及釐清。


    A full improvement of kaolinite can be achieved by successively injecting CaCl2, KOH, sodium silicate solution, and deionized water via electrokinetic chemical treatment (ECT) as reported in recent studies. However, the total duration of the tests for full improvement reached up to 15 days (excluding consolidation stage). In order to reduce the duration, increasing voltage is one of the most direct methods. A series of tests divided into 4 phases, in which aimed to clarify the effects of applied voltage on ECT tests, including: (1) apply various amounts of voltage with the injection of CaCl2 for a constant duration. (2) apply a higher voltage while halve the duration of CaCl2 injection. (3) based on full improvement combination (C72K48NR72H168), double the applied voltage and reduce half duration. (4) observe strength development after injection of sodium silicate. Results indicate that an increase of voltage will consequently enhance electrokinetic and electrochemical reaction, so that pH will decrease and raise near the anode and the cathode, respectively, and Ca2+ ions faster accumulate near the cathode. Moreover, under the sole injection of CaCl2, the effect of increasing voltage and reducing duration has little difference. Afterward, the method of increasing voltage and reducing duration simultaneously was applied to full improvement combination (C72K48NR72H168). Results indicated that a higher voltage applied to ECT with less chemical injection duration would not lead to a greater strength improvement. Weak strength was observed accordingly between the middle and near the cathode. In other words, so far some basic factors caused by voltage should be further discussed and clarified.

    Table of Content 中文摘要 I Abstract II Acknowledgement III Table of Content IV List of Tables VII List of Figures VIII Nomenclature XII Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 2 1.3 Thesis structure 2 Chapter 2 LITERATURE REVIEW 3 2.1 Introduction 3 2.2 Electrokinetic Phenomena in Soils 3 2.2.1 Electroosmosis 3 2.2.2 Electromigration 4 2.3 Electrochemical Effects 5 2.3.1 Electrolysis 5 2.3.2 Cation Exchange 6 2.4 Influence of Voltage on Electrokinetic experiment 7 2.5 Electrokinetic Chemical Treatment (ECT) 7 2.5.1 Soil improvement with injection of Ca2+ ions 8 2.5.2 Soil improvement with injection of sodium silicate solution 11 2.5.3 ECT with Optimum Injection Combination 15 2.6 Summary 20 Chapter 3 METHODS, MATERIALS, AND PLAN 21 3.1 Introduction 21 3.2 Research Plan 21 3.3 Experimental Materials 26 3.3.1 Soil 26 3.3.2 Deionized water 27 3.3.3 Chemical Solution 27 3.3.4 Filter Papers 28 3.3.5 Electrodes 28 3.4 Experimental Apparatus 29 3.4.1 ECT Test Cell 29 3.4.2 Cylinders and Piezometers 31 3.4.3 Monitoring System Setup 33 3.4.4 Power Supply 34 3.5 ECT Experimental Procedure 34 3.5.1 Installation of ECT Test Cell 35 3.5.2 Sample Preparation 36 3.5.3 Consolidation 36 3.5.4 Installation of Cylinders, Monitoring Setup, and Power supply 36 3.5.5 Treatment Stages 37 3.6 Laboratory Test 37 3.6.1 Cone Penetration Test 37 3.6.2 Water Content Measurement 41 3.6.3 pH Measurement 42 3.6.4 ICP-AES analysis 43 Chapter 4 RESULTS AND DISCUSSIONS 45 4.1 Introduction 45 4.2 Phase 1: Induced effects of increasing voltage on injection of CaCl2 45 4.2.1 Inflow & Voltage Distribution 45 4.2.2 Water Content 49 4.2.3 pH Distribution 50 4.2.4 Ca2+ ions Distribution 51 4.2.5 Cone Resistance 52 4.2.6 Discussion 53 4.3 Phase2: Examine the method of reducing duration with increasing applied voltage on injection of CaCl2 solution 54 4.3.1 Inflow & Voltage distribution 54 4.3.2 Water content 59 4.3.3 pH Distribution 60 4.3.4 Ca2+ ions Distribution 61 4.3.5 Cone Resistance 62 4.3.6 Discussion 62 4.4 Phase3: Apply the concept of Phase 2 to the ECT full-improvement 65 4.4.1 Reproduce C72K48N72H168 66 4.4.2 Inflow & Voltage Distribution 69 4.4.3 Water content 71 4.4.4 pH Distribution 74 4.4.5 Ca2+ ions Distribution 80 4.4.6 Cone resistance 83 4.4.7 Discussion 85 4.5 Phase4: Observe the strength development after injection of sodium silicate 87 4.5.1 Inflow & Voltage Distribution 88 4.5.2 Water content 90 4.5.3 pH Distribution 91 4.5.4 Ca2+ ions distribution 94 4.5.5 Cone resistance 96 4.5.6 Discussion 98 Chapter 5 CONCLUSIONS AND FUTURE WORK 101 5.1 Conclusions 101 5.2 Future work 103 References 105 Appendix A B Appendix B C Appendix C D

    References
    〔1〕 Abdullah,W.S., Al-Zou'bi, M.S. & Alshibli, K.A., 1996. “On the physicochemical aspects of compacted clay compressibility.” Can. Geotech. J., 34, 551–559.
    〔2〕 Acar, Y.B., A.N. Alshawabkeh, 1993. “Principles of electrokinetic remediation.” Environ. Sci. Technol., 27(13), 2638-2647
    〔3〕 Asavadorndeja, P., U. Glawe, 2005. “Electrokinetic Strengthening of Soft Clay Using the Anode Depolarization Method.” Bull. Eng. Geol. Environ., 64, 237-245.
    〔4〕 Assarson, K.G., B. Broms, S. Granholm, K. Paus, 1971. ”Deep Stabilization of Soft Cohesive Soils.” Linden-Alimark, Sweden.
    〔5〕 ASTM D2216, 2010. “Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.”
    〔6〕 ASTM D4972, 2013. “Standard Test Methods for pH of Soils.”
    〔7〕 ASTM D5778, 2012. “Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils.”
    〔8〕 Badv, K., Mohammadzadeh, K., 2015. “Laboratory assessment of the electro-osmotic consolidation technique for urmia lake sediments.” Iranian journal of science and technology transactions of civil engineering, 39(c2+), 485-496
    〔9〕 Casagrande, L., 1952. “Electro-osmotic Stabilization of Soils.” J. Boston Soc. Civ. Eng., 39(1), 51–83.
    〔10〕 Chang, H.W., P.G. Krishna, S.C. Chien, C.Y. Ou, M.K. Wang, 2010. “Electro-Osmotic Chemical Treatment: Effects of Ca2+ Concentration on the Mechanical Strength and pH of Kaolin.” Clays Clay Miner., 58(2), 154-163.
    〔11〕 Cheng, M.Y., 2018. “A Study of the Physicochemical Behaviors Using Deionized Water Injection via Electrokinetic Chemical Treatment” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔12〕 Chien, S. C., Ou, C. Y., Wang, M. K., 2009. “Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil.” Applied Clay Science , 44(3–4), 218-224.
    〔13〕 Diamond, S. & Kinter, E.B., 1965. “Mechanisms of soil-lime stabilization-an interpretative review.” Highway Reach Record, 92, 83-102.
    〔14〕 Estabragh, A.R., M. Naseh, A.A. Javadi, 2014. “Improvement of Clay Soil by Electro-osmosis Technique.” Appl. Clay Sci., 95, 32-36.
    〔15〕 Hamouda, A.A., H.A.A Amiri, 2014. “Factors Affecting Alkaline Sodium Silicate Gelation for In-Depth Reservoir Profile Modification.” Energies, 7, 568-590.
    〔16〕 Hiemenz P.C., 1977. Principles of Colloid and Surface Chemistry. Marcel Dekker, New York.
    〔17〕 Hong, C.F., 2013. “Mechanism of Cementation and Development of Soil Strength near the Anode in Electro-Osmotic Chemical Treatment.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔18〕 Iler, K. Palph, 1979. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley Interscience, New York.
    〔19〕 Lee, T.Y., 2010. “Optimization of Kaolinite Soil Strength Improvement in Electroosmotic Chemical Treatment.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔20〕 Lefebvre, G., F. Burnotte., 2002. “Improvements of Electroosmotic Consolidation of Soft Clays by Minimizing Power Loss at Electrodes.” Can. Geotech. J., 39, 399–408.
    〔21〕 Li, Y & Gong, X.-N & Zhang, X.-C., 2011. “Experimental research on effect of applied voltage on one-dimensional electroosmotic drainage.” Yantu Lixue/Rock and Soil Mechanics. 32. 709-714+721.
    〔22〕 Lin, C.Y., 2016. “Mechanism and long-term behavior of the ECT full improvement.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔23〕 Lin, Y.S., 2014. “Strength Improvement and Cementation Mechanism of Kaolinite in Electroosmotic Chemical Treatment.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔24〕 Lin, Y.S., S.C. Chien, C.Y. Ou, 2017. “On the Improvement through the Middle Area of Kaolinite with Electroosmotic Chemical Treatment.” J. GeoEng., 12(4), 167-173.
    〔25〕 Ma, C., L. Chen, B. Chen, 2016. “Experimental Study on Soft Clay Stabilized with Cement-Based Stabilizer.” Proceedings of the 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Fukuoka, Japan, 2043-2046.
    〔26〕 M. Cherifi, S. Hazourli, M. Ziati, 2009. “Initial Water Content and Temperature Effects on Electrokinetic Removal of Aluminium in Drinking Water Sludge.” Physics Procedia, 2(3),1021-1030
    〔27〕 Mitchell, J.K., K. Soga, 2005. Fundamental of Soil Behavior. 3rd Edition, John Wiley & Sons, New York.
    〔28〕 Ou, C.Y., S.C. Chien, C.C. Yang, C.T. Chen, 2015a. “Mechanism of Soil Cementation by Electroosmotic Chemical Treatment.” Appl. Clay Sci., 104, 135-142.
    〔29〕 Ou, C.Y., S.C. Chien, R.H. Liu, 2015b. “A Study of the Effects of Electrode Spacing on the Cementation Region for Electro-Osmotic Chemical Treatment.” Appl. Clay Sci., 104, 168-181.
    〔30〕 Ou, C.Y., S.C. Chien, T.Y. Lee, 2013. “Development of a Suitable Operation Procedure for Electroosmotic Chemical Soil Improvement.” J. Geotech. Geoenviron. Eng. ASCE, 139(6), 993-1000.
    〔31〕 Ou, C.Y., S.C. Chien, Y.T. Syue, C.T. Chen, 2018. “A Novel Electroosmotic Chemical Treatment for Improving the Clay Strength throughout the Entire Region.” Appl. Clay Sci., 153, 161-171
    〔32〕 Ozkan, S., R.K. Seals, R. Gale, 1999. “Electrokinetic stabilization of kaolinite by injection of Al and ions.” Ground Improvem., 3, 135–144.
    〔33〕 Pandey, B.K. & Rajesh, S, 2019. “Enhanced Engineering Characteristics of Soils by Electro-Osmotic Treatment: An Overview.” Geotechnical and geological engineering.
    〔34〕 Syue, Y.T., 2015. “Effects of Enhancing Efficiency in Pozzolanic Reaction and Injecting Water Glass on the ECT Full Improvement.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔35〕 Sögaard C., J. Funehag, Z. Abbas, 2018. “Silica sol as grouting material a physicochemical analysis.” Nano Converg., 5(1):6.
    〔36〕 Visser, J.H.M., 2018. “Fundamentals of Alkali-silica Gel Formation and Swelling: Condensation under Influence of Dissolved Salts.” Cem. Concr. Res., 105, 18-30.
    〔37〕 Yang, X., P. Roonasi, A. Holmgren, 2008. “A Study of Sodium Silicate in Aqueous Solution and Sorbed by Synthetic Magnetite Using in Situ ATR-FTIR Spectroscopy.” J. Colloid Interface Sci., 328(1), 41-47.

    QR CODE