簡易檢索 / 詳目顯示

研究生: 黃英展
Yin-Chang Huang
論文名稱: 氯化鈣對於電動力化學灌漿之影響探討
Effect of calcium chloride on electrokinetic chemical treatment
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 林宏達
Horn-Da Lin
簡紹琦
Shao-Chi Chien
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 94
中文關鍵詞: 電壓電動力化學灌漿矽酸鈉氯化鈣
外文關鍵詞: Voltage, Electrokinetic chemical treatment, Sodium silicate, Calcium chloride
相關次數: 點閱:194下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年研究顯示,在電動力化學灌漿工法中,增加給定的電壓可以提高電滲透的效果,進而降低試驗時間。其結果能有效增加室內錐頭阻抗強度至中間區域,但中間至負極區域之強度仍不理想。這種現象的發生可能是由於化學溶液的高流速隨著電壓的升高而引起的。因此,為改善此問題,本研究嘗試: (一) 給定電壓35V下,觀察氫氧化鉀溶液在土壤中的物化性質及溶液在土壤中流動狀況;(二) 給定電壓35V下,觀察矽酸鈉溶液在土壤中的物化性質及溶液在土壤中流動狀況;(三) 排除氯化鈣的影響,觀察灌入去離子水後的強度發展;(四) 藉由前三階段的結果,歸納出電動力化學灌漿中強度增加的機制。研究結果指出,由於前三個階段缺乏氯化鈣的參與,土壤中電滲透作用減弱,導致排水和電化學反應的效果不好。此外,本研究藉由控制鹼性溶液的灌注時間,解決了遠離陰極處(FC)酸鹼值過高的問題,然而也因此導致了灌注量不夠的現象。


    Recent studies have shown that in ECT, the increasing voltage can improve the effect of electroosmosis, thereby reducing the duration. As a result, the strength of treated soil increased from anode to middle area, however, the strength from middle to cathode area still remained weak. The occurrence of this phenomenon may be due to the high flow rate of the chemical solution as increasing voltage. Therefore, in order to improve it, this study attempts to: (1) Observe the physical and chemical characteristic and flow modes of potassium hydroxide solution in the soil at a given voltage of 35V; (2) Observe the physical and chemical characteristic and flow modes of sodium silicate solution in the soil at a given voltage of 35V; (3) Exclude the effect of calcium chloride and observe the strength improvement after the injection of deionized water; (4) Based on the results of the first three phases, the mechanism for the strength improvement of ECT tests would be summarized. Results indicate that due to the absence of calcium chloride in first three phases, the effect of electroosmosis in the soil was reduced, leading to the poor effects of drainage and the electrochemical reaction. In addition, this study solved the problem of high pH value at FC by shortening the injection time of the alkaline solution, but it also caused the phenomenon of insufficient injection.

    中文摘要 I Abstract II Acknowledgement III Table of Content IV List of Tables VII List of Figures VIII Chapter 1 INTRODUCTION - 1 - 1.1 Background - 1 - 1.2 Objectives - 1 - 1.3 Thesis structure - 2 - Chapter 2 LITERATURE REVIEW - 3 - 2.1 Introduction - 3 - 2.2 Electrokinetic Phenomena in Soils - 3 - 2.2.1 Electroosmosis - 3 - 2.2.2 Electromigration - 4 - 2.3 Electrochemical Effects - 4 - 2.3.1 Electrolysis - 5 - 2.3.2 Cation Exchange - 5 - 2.4 Influence of Voltage on Electrokinetic experiment - 6 - 2.5 Electrokinetic Chemical Treatment (ECT) - 6 - 2.5.1 Soil improvement with injection of CaCl2 - 6 - 2.5.2 Soil improvement with injection of sodium silicate solution - 7 - 2.6 ECT with optimum injection combination - 17 - 2.7 Summery - 22 - Chapter 3 METHODS, MATERIALS, AND PLAN - 23 - 3.1 Introduction - 23 - 3.2 Research Plan - 23 - 3.3 Experimental Materials - 28 - 3.3.1 Soil - 28 - 3.3.2 Chemical solution - 29 - 3.3.3 Filter Papers - 30 - 3.3.4 Electrodes - 30 - 3.4 Experimental Apparatus - 31 - 3.4.1 ECT Test Cell - 31 - 3.4.2 Cylinders and Piezometers - 33 - 3.4.3 Monitoring System Setup - 34 - 3.4.4 Power Supply - 35 - 3.5 ECT Experimental Procedure - 37 - 3.5.1 Installation of ECT Test Cell - 37 - 3.5.2 Sample Preparation - 38 - 3.5.3 Consolidation - 38 - 3.5.4 Installation of Cylinders, Monitoring Setup, and Power supply - 38 - 3.5.5 Treatment Stages - 39 - 3.6 Laboratory Test - 39 - 3.6.1 Cone Penetration Test - 39 - 3.6.2 Water Content Measurement - 41 - 3.6.3 pH Measurement - 42 - Chapter 4 RESULTS AND DISCUSSIONS - 44 - 4.1 Introduction - 44 - 4.2 Phase 1 - Mobility of KOH solution under 35V - 44 - 4.2.1 Injection volume - 44 - 4.2.2 Water Content - 45 - 4.2.3 pH Distribution - 46 - 4.2.4 Cone Resistance - 49 - 4.2.5 Discussion - 50 - 4.3 Phase 2 - Mobility of sodium silicate solution under 35V - 52 - 4.3.1 Injection volume - 52 - 4.3.2 Water content - 53 - 4.3.3 pH Distribution - 54 - 4.3.4 Cone Resistance - 55 - 4.3.5 Discussion - 56 - 4.4 Phase 3 - Observe the strength improvement after injection of deionized water - 58 - 4.4.1 Injection volume - 58 - 4.4.2 Water content - 59 - 4.4.3 pH Distribution - 61 - 4.4.4 Cone resistance - 63 - 4.4.5 Discussion - 65 - 4.5 Phase 4 - Effect of calcium chloride injection - 66 - 4.5.1 Injection volume - 66 - 4.5.2 Water content - 67 - 4.5.3 pH Distribution - 68 - 4.5.4 Cone resistance - 69 - 4.5.5 Suitable pH distribution for full improvement - 71 - 4.5.6 Discussion - 73 - Chapter 5 CONCLUSIONS AND FUTURE WORK - 74 - 5.1 Conclusions - 74 - 5.2 Recommendations - 75 - References - 76 - Appendix A B Appendix B C

    References
    〔1〕 Acar, Y.B., A.N. Alshawabkeh, 1993. “Principles of electrokinetic remediation.” Environ. Sci. Technol., 27(13), 2638-2647.ASTM D5778, 2012. “Standard Test Method for Performing Electronic Friction Cone and Piezocone Penetration Testing of Soils.”
    〔2〕 Assarson, K.G., B. Broms, S. Granholm, K. Paus, 1971. ”Deep Stabilization of Soft Cohesive Soils.” Linden-Alimark, Sweden
    〔3〕 ASTM D2216, 2010. “Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass.”
    〔4〕 ASTM D4972, 2013. “Standard Test Methods for pH of Soils.”
    〔5〕 Asavadorndeja, P., U. Glawe, 2005. “Electrokinetic Strengthening of Soft Clay Using the Anode Depolarization Method.” Bull. Eng. Geol. Environ., 64, 237-245.
    〔6〕 Assarson, K.G., B. Broms, S. Granholm, K. Paus, 1971. ”Deep Stabilization of Soft Cohesive Soils.” Linden-Alimark, Sweden.
    〔7〕 Cheng, M.Y., 2018. “A Study of the Physicochemical Behaviors Using Deionized Water Injection via Electrokinetic Chemical Treatment” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔8〕 Casagrande, L., 1952. “Electro-osmotic Stabilization of Soils.” J. Boston Soc. Civ. Eng., 39(1), 51–83.
    〔9〕 Chang, H.W., P.G. Krishna, S.C. Chien, C.Y. Ou, M.K. Wang, 2010. “Electro-Osmotic Chemical Treatment: Effects of Ca2+ Concentration on the Mechanical Strength and pH of Kaolin.” Clays Clay Miner., 58(2), 154-163.
    〔10〕 Chien, S. C., Ou, C. Y., Wang, M. K., 2009. “Injection of saline solutions to improve the electro-osmotic pressure and consolidation of foundation soil.” Applied Clay Science , 44(3–4), 218-224.
    〔11〕 Estabragh, A.R., M. Naseh, A.A. Javadi, 2014. “Improvement of Clay Soil by Electro-osmosis Technique.” Appl. Clay Sci., 95, 32-36.
    〔12〕 Hong, C.F., 2013. “Mechanism of Cementation and Development of Soil Strength near the Anode in Electro-Osmotic Chemical Treatment.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔13〕 Hamnett, R., 1980. “A study of the processes involved in the electro-reclamation of contaminated soils.” Dissertation, University of Manchester, UK.
    〔14〕 Iler, K. Palph, 1979. The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry. Wiley Interscience, New York.
    〔15〕 Lee, T.Y., 2010. “Optimization of Kaolinite Soil Strength Improvement in Electroosmotic Chemical Treatment.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔16〕 Lefebvre, G., F. Burnotte., 2002. “Improvements of Electroosmotic Consolidation of Soft Clays by Minimizing Power Loss at Electrodes.” Can. Geotech. J., 39, 399–408.
    〔17〕 Li, Y & Gong, X.-N & Zhang, X.-C., 2011. “Experimental research on effect of applied voltage on one-dimensional electroosmotic drainage.” Yantu Lixue/Rock and Soil Mechanics. 32. 709-714+721.
    〔18〕 Lin, C.Y., 2016. “Mechanism and long-term behavior of the ECT full improvement.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔19〕 Lin, Y.S., 2014. “Strength Improvement and Cementation Mechanism of Kaolinite in Electroosmotic Chemical Treatment.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔20〕 Lin, Y.S., S.C. Chien, C.Y. Ou, 2017. “On the Improvement through the Middle Area of Kaolinite with Electroosmotic Chemical Treatment.” J. GeoEng., 12(4), 167-173.
    〔21〕 Mitchell, J.K., K. Soga, 2005. Fundamental of Soil Behavior. 3rd Edition, John Wiley & Sons, New York.
    〔22〕 Ma, C., L. Chen, B. Chen, 2016. “Experimental Study on Soft Clay Stabilized with Cement-Based Stabilizer.” Proceedings of the 15th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Fukuoka, Japan, 2043-2046.
    〔23〕 Ou, C.Y., S.C. Chien, C.C. Yang, C.T. Chen, 2015a. “Mechanism of Soil Cementation by Electroosmotic Chemical Treatment.” Appl. Clay Sci., 104, 135-142.
    〔24〕 Ou, C.Y., S.C. Chien, R.H. Liu, 2015b. “A Study of the Effects of Electrode Spacing on the Cementation Region for Electro-Osmotic Chemical Treatment.” Appl. Clay Sci., 104, 168-181.
    〔25〕 Ou, C.Y., S.C. Chien, T.Y. Lee, 2013. “Development of a Suitable Operation Procedure for Electroosmotic Chemical Soil Improvement.” J. Geotech. Geoenviron. Eng. ASCE, 139(6), 993-1000.
    〔26〕 Ou, C.Y., S.C. Chien, Y.T. Syue, C.T. Chen, 2018. “A Novel Electroosmotic Chemical Treatment for Improving the Clay Strength throughout the Entire Region.” Appl. Clay Sci., 153, 161-171
    〔27〕 Syue, Y.T., 2015. “Effects of Enhancing Efficiency in Pozzolanic Reaction and Injecting Water Glass on the ECT Full Improvement.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔28〕 Wu, S.H., 2019. “Effect of voltages on electrokinetic chemical treatment.” Master’s thesis, National Taiwan University of Science and Technology, Taipei, Taiwan.
    〔29〕 Sögaard C., J. Funehag, Z. Abbas, 2018. “Silica sol as grouting material a physicochemical analysis.” Nano Converg., 5(1):6.
    〔30〕 Visser, J.H.M., 2018. “Fundamentals of Alkali-silica Gel Formation and Swelling: Condensation under Influence of Dissolved Salts.” Cem. Concr. Res., 105, 18-30.
    〔31〕 Y.Yamashita, R.Miyahara, K.Sakamoto. “Chapter 28 - Emulsion and Emulsification Technology.” Cosmetic Science and Technology, 2017, 489-506.

    QR CODE