簡易檢索 / 詳目顯示

研究生: 張哲豪
Che-hao Chang
論文名稱: 融合階層機率模型預處理遮罩及方向強度特徵之低解析行人偵測
Low Resolution Pedestrian Detection Using Hierarchical Probability-Based Pre-Filtering and Orientation/Magnitude-Based AdaBoost
指導教授: 郭景明
Jing-Ming Guo
口試委員: 謝君偉
Jun-Wei Hsieh
丁建均
Jian-Jiun Ding
徐繼聖
Gee-Sern Hsu
王乃堅
Nai-Jian Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 90
中文關鍵詞: 低解析度行人偵測機率模型預處理遮罩方向強度混合特徵Adaboost
外文關鍵詞: low resolution pedestrian detection, probability-based pedestrian mask pre-filtering, Orientation/Magnitude-Based AdaBoost.
相關次數: 點閱:153下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行人偵測是近幾年來一個很新穎的研究課題。它的應用層面非常的廣泛,從一般裝設在路邊的監視器進行監視街道安全、偵測行人的人數搭配自動控制系統來節省能源,到近年來結合智慧型車輛或行車記錄器以增加行車安全,都是行人偵測的應用方向。在行人偵測中,若整個系統只使用同一種特徵系列將造成偵測率與錯誤率受到該特徵的限制,因此本論文使用兩個不同特性的分類器串聯而成,第一層使用機率模型預處理遮罩,任務就是迅速排除大量非行人區塊;第二層使用本論文提出的方向強度的混合特徵來應用於行人偵測。這個特徵混合了兩種不同的特徵,並經由AdaBoost演算法來挑選出最佳的弱分類器,以同時保有方向和強度的邊緣特性。此特徵的一大優勢就是可以利用積分圖來加速計算特徵,提升整體的處理速度,最後再依使用環境搭配上Cascade系統和Codebook背景濾除整合出一個階層式的行人偵測系統。實驗的部分,本研究使用INRIA的公開資料庫來做訓練和測試,並且比較近幾年常見用在行人偵測的特徵:Haar-like features和Edgelet features和HOG(Histogram of Oriented Gradients)搭配SVM的方法。另外在論文中也討論到解析度和行人偵測之間的關係和重要性,而進一步分析、比較在低解析度的影像中各種特徵的的優劣。從實驗數據中,證明我們提出的特徵不論在偵測速度和ROC曲線,和上述幾種特徵比較之下,皆有良好的效能,可以進一步的應用在實用的系統中。


    The pedestrian detection is a popular research field for applying in the intelligent surveillance system in recent years. In this study, a hierarchical pedestrian detection system is proposed to cope with this issue. In pedestrian detection phase, if the whole system uses only one feature series, the detection rate is limited as it is solely determined by the associated feature series. To cope with this, this thesis discusses the possibility of connecting two classifiers of totally different features in series. The first classifying layer uses probability-based pedestrian mask pre-filtering, and the sum of the block filters out non-pedestrian features.The objective of the first layer is to immidiately filter out most of non-pedestrian regions while retaining as more true pedestrian as possible. The second layer exploits the proposed orientation/magnitude-based AdaBoost strong classifier. In addition, the concept of integral image is also adopted to simplify the calculations of the adopted features to increase the decision speed. Finally, according to the application environment, the system combines the cascade system and codebook model which enhances the overall processing speed to yield real-time requirement. In experimental results, some popular features such as the Haar-like feature, the edgelet feature and Histogram of Oriented Gradients (HOG) are adopted for comparison. Moreover, this study anaylized the relations and importances between resolution and pedestrian detection accuracy, and further discussing the performance in the low resolution image of the metioned features. The results demonstrate that the proposed system can yield better performance as well as high processing efficiency, and thus it can be a very competitive candidate for intelligent surveillance applications.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 行人偵測與的困難處 3 1.3 解析度對於行人偵測的重要性探討與分析 3 1.4 論文架構 7 第二章 文獻探討 8 2.1行人偵測相關文獻-移動窗口檢測 9 2.2基於矩形特徵與AdaBoost的方法 10 2.3基於Edgelet特徵與AdaBoost的方法 14 2.4基於方向梯度直方圖HOG(Histograms of Oriented Gradients) 與支持向量機(SVM)的方法 16 2.4.1方向梯度直方圖HOG(Histograms of Oriented Gradients) 16 2.4.2支持向量機(Support Vector Machines) 18 第三章 階層式行人偵測技術 30 3.1 檢測預處理(前處理)-直方圖均衡化(Histogram Equalization) 31 3.2 機率模型預處理遮罩(Probability-Based Pre-Filtering) 33 3.2.1 初始行人遮罩的產生 33 3.2.2 最小均方法(Least Mean Square, LMS)調整權重表 36 3.3 方向強度特徵(Orientation/Magnitude-Based feature) 39 3.3.1方向強度特徵的特徵值計算 39 3.3.2方向強度特徵的數量 41 3.3.3 積分圖(Integral Image) – 加速方向強度特徵之特徵值計算 43 3.4 AdaBoost 49 3.4.1 AdaBoost的簡介 49 3.4.2 弱分類器 50 3.4.3 AdaBoost學習演算法 52 3.5 系統架構 54 3.5.1行人偵測流程 54 3.5.2檢測策略:區域多數決 58 3.5.3檢測策略:用於移動場景之Cascade架構 59 3.5.4檢測策略:用於固定場景之Codebook背景濾除架構 60 第四章 實驗結果 69 4.1 行人偵測實驗結果與分析 69 4.2 行人監控系統 74 4.2.1 軟、硬體設備的規格 75 4.2.2 PTZ攝影機的控制與介面化程式 78 第五章 結論與未來展望 83 參考文獻 85 作者簡介 89 授權書 90

    [1] P. Dollar, C. Wojek, B. Schiele, and P. Perona, “Pedestrian detection: a benchmark.” IEEE Conference on Computer Vision and Pattern Recognition, pp. 304-311, June 20-25, 2009.
    [2] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. IEEE International Conference Computer Vision and Pattern Recognition, pp. 886-893, 2005.
    [3] A. Mohan, C. Papageorgiou, and T. Poggio, “Example-based object detection in images by components,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 4, pp. 349-361, Apr. 2001.
    [4] K. Mikolajczyk, C. Schmid, and A. Zisserman, “Human detection based on a probabilistic assembly of robust part detectors,” in Proc. European Conf. Computer Vision, pp. 69-81, 2004.
    [5] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe, “A boosted particle filter: multitarget detection and tracking,” in Proc. European Conf. Computer Vision, pp. 28-39, 2004.
    [6] V. D. Shet, J. Neumann, V. Ramesh, and L. S. Davis, “Bilattice-based logical reasoning for human detection,” in Proc. IEEE International Conference Computer Vision and Pattern Recognition, 2007.
    [7] I. P. Alonso, D. F. Llorca, M. A. Sotelo, L. M. Bergasa, Pedro Revenga de Toro, J. Nuevo, M. Ocana, and M. A. G. Garrido, “Combination of feature extraction methods for SVM pedestrian detection,” IEEE Trans. Intelligent Transportation Systems, vol. 8, no. 2, pp. 292-307, June 2007.
    [8] A. Broggi, A. Fascioli, I. Fedriga, A. Tibaldi, and M. D. Rose, “Stereo-based preprocessing for human shape localization in unstructured environments,” in Proc. IEEE Intelligent Vehicles Symp., pp. 410-415, 2003.
    [9] D. M. Gavrila, “A Bayesian exemplar-based approach to hierarchical shape matching,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 8, pp. 1408-1421, Aug. 2007.
    [10] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla, “Model-based hand tracking using a hierarchical bayesian filter,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 9, pp. 1372-1385, Sept. 2006.
    [11] T. F. Cootes, S. Marsland, C. J. Twining, K. Smith, and C. J. Taylor, “Groupwise diffeomorphic non-rigid registration for automatic model building,” in Proc. European Conf. Computer Vision, pp. 316-327, 2004.
    [12] P. Viola and M. J. Jones, “Robust real-time object detection.” International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, 2004.
    [13] Wu, B. and Nevatia, R. “Detection of multiple, partially occluded humans in a single image by Bayesian combination of edgelet part detectors,” In Proc. International Conference on Computer Vision, vol. I, pp. 90–97.
    [14] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using patterns of motion and appearance,” In Proc. International Conference on Computer Vision, vol. 63, no. 2, pp. 153-161, 2005.
    [15] Y. Freund and R. Schapire, “A decision theoretic generalization of on-line learning and an application to boosting.” Journal of Computer and System Sciences, vol. 55, pp. 119-139, 1997.
    [16] S. Agarwal, A. Awan, and D. Roth, “Learning to detect objects in images via a sparse, part-based representation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 11, pp. 1475- 1490, Nov. 2004.
    [17] B. Leibe, N. Cornelis, K. Cornelis, and L.V. Gool, “Dynamic 3D scene analysis from a moving vehicle,” in Proc. IEEE International Conference Computer Vision and Pattern Recognition, 2007.
    [18] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in Proc. International Conference Computer Vision and Pattern Recognition, pp. 886-893, 2005.
    [19] D. G. Lowe, “Distinctive image features from scale invariant keypoints.” International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
    [20] A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recognition: a review,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 4-37, Jan. 2000.
    [21] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995.
    [22] C. P. Papageorgiou, M. Oren and T. Poggio, "A general framework for object detection," Sixth International Conference on Computer Vision, pp. 555-562, Jan. 1998.
    [23] R. Lienhart, A. Kuranov and V. Pisarevsky, "Empirical analysis of detection cascades of boosted classifiers for rapid object detection," Pattern Recognition, vol. 2781, pp. 297-304, Sep. 2003.
    [24] D. H. Kim , S. U. Jung and M. J. Chung, "Extension of cascaded simple feature based face detection to facial expression recognition," Pattern Recognition Letters, vol. 29, no. 11, pp. 1621-1631, Aug. 2008.
    [25] M. Enzweiler and D. Gavrila,”Monocular Pedestrian Detection: Survey and Experiments,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2179-2195, December. 2009.
    [26] C. Cortes and V. Vapnik, "Support-vector networks," Machine Learning, vol. 20, no. 3, pp. 273-297,Sep. 1995.
    [27] P. Viola and M. J. Jones, "Robust real-time face detection," International Journal of Computer Vision, vol. 57, no. 2, pp. 137-154, May 2004.
    [28] J.-M. Guo, Y.-F. Liu, C.-H. Hsia, M.-H. Shih, and C.-S. Hsu, “Hierarchical method for foreground detection using codebook model,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 21, no.6, pp. 804-815, June, 2011
    [29] K. Kim, T.H. Chalidabhongse, D. Harwood, and L. Davis, “Real-time foreground-background segmentation using codebook model,” Real-Time Imaging, vol. 11, no. 3, pp. 172-185, June. 2005.
    [30] C. Stauffer and W.E.L Grimson, “Adaptive background mixture models for real-time tracking,” IEEE International Conference on Computer Vision and Pattern Recognition, vol.2, pp. 246–52, June, 1999.
    [31] INRIA dataset: http://pascal.inrialpes.fr/data/human/
    [32] SONY EVI-D70技術手冊,http://pro.sony.com/bbsc/ssr/product-EVID70P/

    QR CODE