簡易檢索 / 詳目顯示

研究生: 洪國峰
GUO-FONG HONG
論文名稱: 一種製備Bacteriorhodopsin 生物光電晶片的簡易方法
A Simple Preparation Method of Bacteriorhodopsin-Coated Photoelectric Chips
指導教授: 陳秀美
Hsiu-Mei Chen
口試委員: 戴 龑
Yian Tai
林保宏
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 170
中文關鍵詞: 紫色細胞膜生物光電晶片乙醯化細菌視紫質
外文關鍵詞: Bacteriorhodopsin, biophotoelectric chip, acetylation, purple membrane
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

Bacteriorhodopsin (BR)為Halobacterium salinarium紫色細胞膜(purple membrane,PM)上具有單一方向光驅動質子泵功能之蛋白質,目前已被公認為未來應用於生物光電及全影像技術之最佳生物材料。早期製備一個具有BR定向固定化之生物晶片,其方法是耗時、手續繁雜且效果不彰的。本研究中我們開發出一種既簡單又可以具有高BR光電性質之生物晶片的製備方法。使懸浮於磷酸鹽溶液內的PM附著於導電ITO玻璃表面上,並乾燥後,利用氙燈激發此晶片時會產生高強度的光電訊號。更進一步地針對不同緩衝液及其pH值,以及電沉積法等不同變因對光電流之影響加以探討,且利用XPS分析,我們提出因為磷酸根離子會快速附著於ITO玻璃表面上而有效地促進PM膜的方向性排列,進而增強BR晶片光電流響應之假設。並且測量PM晶片於不同電解液環境下所得到的光電流值,發現若使用添加有10 mM PB的100 mM KCl (pH=7.5)當電解液時,可以讓我們的生物光電晶片產生最高的光電流值,且原生種PM (n-PM)晶片與經過乙醯化修飾PM (A-PM)晶片其光電流訊號發生反向的電解液pH值並不相同。此外,也利用脈衝雷射分別對不同的PM晶片進行激發,發現光源強度和此兩種晶片之光電流值間均呈現兩個不同階段的線性關係。最後,探討添加NaN3或DTT分別對於D96N和G241C 突變PM膜晶片所造成的影響,發現分別添加10 mM NaN3與1 mM DTT於此兩種晶片中,可使晶片的光電流值達到最大。


Bacteriorhodopsin (BR), the unique light-driven proton-pump protein in the purple membrane (PM) of Halobacterium salinarium, has been considered the most promising biomaterial for applications in photoelectrics and holography. However, the former development has been slow so far due to a great demand of orientationally structured BR for producing high-efficiency photoelectric chips. Herein, a simple method to prepare PM-coated chips with promising photoelectric properties was reported. A PM film prepared from a phosphate-buffered solution was casted and dried onto an ITO electrode, yielding high photocurrents while illuminated with a Xenon arc lamp. The studies on effects of buffer compositions and pHs, electrodeposition, and XPS analyses supported the hypothesis that the preferable binding of phosphoric ions onto ITO helped improve the uniformity of PM orientation during the film-casting process. A further study on the electrolyte compositions led to an optimal solution constituted of 10 mM PB and 100 mM KCl, pH 7.5 for the best photocurrent generation. In addition, the photocurrents of the acetylated PM-coated chips reversed at slightly higher pH values in comparison with those of the native-PM coated chips. Two distinct linear relationships between the generated photocurrents and the incident light energy were consistently observed for variously prepared PM chips when they were illuminated with a pulse laser. Finally, for the D96N and G241C mutant PM-coated chips, the addition of 10 mM NaN3 and 1 mM DTT in their respective suspension solutions resulted in achievement of the optimal photocurrent generation.

中文摘要……………………………………………………………………… I 英文摘要……………………………………………………………………… II 誌謝………………………………………………………………………… III 目錄…………………………………………………………………………… IV 表目錄………………………………………………………………………… VII 圖目錄………………………………………………………………………… IX 第一章 緒論………………………………………………………………… 1 第二章 文獻回顧…………………………………………………………… 2 2-1  H. salinarium 和 BR………………………………………………… 2 2-1-1 H. salinarium………………………………………… 2       2-1-2 BR的基本結構和光循環……………………………… 4       2-1-3 BR的光循環分支機制………………………………… 13       2-1-4 BR的應用……………………………………………… 17    2-2  PM固定化方法………………………………………………… 22       2-2-2  Langmuir-Blodgett (LB) 製備法………………… 27 2-2-3 分子排列法(self-assembly and layer-by-layer fabrications) 31       2-2-4 親合性鍵結…………………………………………… 36       2-2-5 其他PM晶片系統之光電響應………………………… 39    2-3 氙燈和雷射光源對BR光電流訊號的影………………………… 40    2-4 突變種PM以及乙醯化PM的光電性質…………………………… 48 2-4-1 D85N和D96N PM及其他突變種的基本性質………………………… 48       2-4-2 乙醯化PM的基本性質………………………………… 54       2-4-3 二價離子對PM的影響………………………………… 57    2-5 ITO玻璃之基本性質…………………………………………… 60 第三章 實驗……………………………………………………………… 63 3-1 實驗藥品和材料……………………………………………………… 63 3-2 實驗儀器……………………………………………………………… 65 3-3 藥品配製……………………………………………………………… 67 3-4 實驗流程……………………………………………………………… 69 3-5 實驗步驟……………………………………………………………… 71       3-5-1 嗜鹽菌之培養與PM之純化…………………………… 71 嗜鹽菌之培養………………………………………………… 71 PM之純化……………………………………………………… 72 BR濃度的定量………………………………………………… 73       3-5-2  乙醯化PM (A-PM)的製備方法……………………… 74       3-5-3  EPS晶片製備法……………………………………… 74       3-5-4  Non-EPS (非EPS)晶片製備法……………………… 75 3-5-5 光電訊號測量……………………………………………………… 76 使用氙燈當光源激發…………………………… 76 使用雷射當光源激發…………………………… 77 PM ITO晶片之I-V curve的量測………………… 78       3-5-6  ESCA樣品之製作……………………………………… 79 第四章 結果與討論………………………………………………………… 80    4-1 生物晶片的建構以及光電流訊號方向的確立………………… 80    4-2 示波器中AC/DC mode以及電流放大器之filter rise time的選擇……………………………………………………………… 82    4-3 PM生物晶片系統裝置的確立…………………………………… 84    4-4 最佳化電解液條件的確立……………………………………… 87    4-5 電場沉積法對於PM懸浮於去離子水中所製備晶片的光電響應之影響……………………………………………………………………………… 91    4-6 不同懸浮溶液對PM晶片之光電流訊號之影響……………….. 92    4-7 電場沉積法對於PM懸浮於PB buffer中所製備晶片的光電流響應影響………………………………………………………………………… 96    4-8 XPS之表面分析………………………………………………… 99    4-9 比較乙醯化PM懸浮於去離子水和PB buffer中並以EPS電場沉積法製備之晶片之光電響應……………………………………………………………………… 106    4-10 利用雷射激發PM生物晶片之光電響應………………………… 107 利用不同雷射強度去激發製備時僅有去離子水的晶片系統……………………………………………………………………………… 109 利用不同雷射強度去激發製備時懸浮於去離子水中的n-PM晶片系統…………………………………………………………………………………111 利用不同雷射強度去激發製備時僅有5 mM pH=8.5 PB buffer的晶片系統…………………………………………………………………………… 114 利用不同雷射強度去激發製備時懸浮於5 mM pH=8.5 PB buffer的native PM 晶片系統………………………………………………………… 116 利用不同雷射強度去激發製備時懸浮於去離子水中的A-PM晶片系統……………………………………………………………………………… 118 利用不同雷射強度去激發製備時懸浮於5 mM pH=8.5 PB buffer的A-PM晶片系統……………………………………………………………………… 122    4-11 不同pH值電解液環境下之PM晶片光電響應………………… 126    4-12 生物晶片光電系統之保存性………………………………… 139    4-13 不同光源波長對生物晶片之光電流訊號之影響…………… 141    4-14 添加NaN3對於D96N PM晶片的光電響應之影響……………… 144 4-15 添加DTT對於G241C突變PM晶片的光電響應之影響………………… 150    4-16 生物晶片濃度和最大吸收光譜……………………………… 152    4-17 利用可變電阻量測晶片光電壓和光電流的變化關係……… 154 第五章 結論………………………………………………………………… 156 參考文獻……………………………………………………………………… 158

王世育,”細菌視紫質表面修飾及應用於單層膜光電晶片製備之研究”,國立台灣科技大學化學工程研究所碩士論文(2006)

溫文興,”Bacteriorhodopsin突變蛋白之初步研究”,國立台灣科技大學化學工程研究所碩士論文(2004)

謝竺君,”Bacteriorhodopsin 及其突變蛋白之光電響應”,國立台灣科技大學化學工程研究所碩士論文(2005)

謝謹謙,”Halobacterium halobium紫色細胞膜光電系統的建立”,國立台灣科技大學化學工程研究所碩士論文(2004)

蘇志溫,”Bacteriorhodopsin生物晶片之光電響應”,國立台灣科技大學化學工程研究所碩士論文(2004)

Adurodija, F.O., Izumi, H., Ishihara, T., Yoshioka, H., Motoyama, M., Murai, K. “Effect of laser irradiation on the properties of indium tin oxide films deposited at room temperature by pulsed laser deposition,” Vacuum, 67, 209-216 (2002)

Alexiev, U., Marti, T., Heyn, M. P. Khorana, H. G., Scherrer, P., “Surface charge of bacteriorhodopsin detected with covalently bound pH indicators at selected extracellular and cytoplasmic sites,” Biochemistry, 33, 298-306 (1994)

Balashov, S. P., “Protonation reactions and their coupling in bacteriorhodopsin,” Biochim. Biophys. Acta., 1460, 75-94 (2000)

Banyal, R. K., Hegde, G. M., Prasad, B. R., Reddy, K. P. J., “A time-dependent multistate model for bacteriorhodopsin photocycle,” Curr. Appl. Phys., 5, 133-138 (2005)

Birge, R. R., “Protein-based optical computing and memories, ” Computer, 25, 56-67 (1992)

Birge, R. R., Gillespie, N. B., Izaguirre, W., Kusnetzow, A., Lawrence, A. F., Singh, D., Song, Q. W., Schmidt, E., Stuart, J. A., Seetharaman, S., Wise, K. J., “Biomolecular electronics: Protein-based associative processors and volumetric memories,” J. Phys. Chem. B, 103, 10746-10766 (1999)

Bondar, A., Suhai, S., Fischer, S., Smith, J. C. Elstner, M., “Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: A theoretical analysis of structural elements,” J. Struct. Biol., 157, 454-469 (2007)

Brizzolara, R. A., “A method for patterning purple membrane using self-assembled monolayers,” Biosystems, 35, 137-140 (1995)

Brizzolara, R. A., Beard, B. C., “Control of purple membrane adsorption to a glass surface using self-assembled monolayers,” J. Vac. Sci. Technol. A, 12, 2981-2987 (1994)

Brown, L. S., Dioumaev, A. K., Needleman, R. Lanyi, J. K., “Local-access model for proton transfer in bacteriorhodopsin,” Biochemistry, 37, 3982-3993 (1998)

Butt, H. J., Fendler, K., Bamberg, E., Tittor, J., Oesterhelt, D., “Aspartic acids 96 and 85 play a central role in the function of bacteriorhodopsin as a proton pump,” EMBO J., 8, 1657-1663 (1989)

Cao, Y., Varo, G., Chang, M., Ni, B., Needleman, R., Lanyi, J. K., “Water is required for proton transfer from aspartate-96 to the bacteriorhodopsin schiff base,” Biochemistry, 30, 10972-10979 (1991)

Chang, C. H., Chen, J. G., Govindjee, R., Ebrey, T., “Cation binding by bacteriorhodopsin,” Proc. Nail. Acad. Sci. USA, 82, 396-400 (1985)

Chang, C. H., Jonas, R., Melchiore, S., Govindjee, R., Ebrey, T. G., “Mechanism and role of divalent cation binding of bacteriorhodopsin,” Biophys. J., 49, 731-739 (1986)

Chen, Z., Lewis, A., Takei, H.,Nebenzahl, I., “Bacteriorhodopsin oriented in polyvinyl alcohol films as an erasable optical storage medium,” Appl. Opt., 30, 5188-5196 (1991)

Chen, D. L., Lu, Y. J., Sui, S. F., Xu, B., Hu, K. S., “Oriented assembly of purple membrane on solid support, mediated by molecular recognition,” J. Phys. Chem. B, 107, 3598-3605 (2003)

Chen, G., Liang, X., Yuan, Y., Yang, G., Zhang, C., Xu, T., Song, Q. W., “All-optical image switch based on bacteriorhodopsin film,” Optik, 118, 377-380 (2007)

Choi, H. G., Min, J., Choi, J. W., Lee, W. H., “Molecular photoreceptor consisting of bacteriorhodopsin/flavin complex Langmuir–Blodgett films,” Biosens. Bioelectron., 13, 1069-1075 (1998)

Choi, H. G., Jung, W. C., Min, J., Lee, W. H., Choi, J. W., “Color image detection by biomolecular photoreceptor using bacteriorhodopsin-based complex LB films,” Biosens. Bioelectron., 16, 925-935 (2001a)

Choi, H. G., Min, J., Han, K. K., Choi, J. W., Lee, W. H., “Photoelectric conversion of bacteriorhodopsin films fabricated by self-assembly technique,” Synthetic Metals, 117, 141-143 (2001b)

Choi, H. G., Min, J., Le, W. H., Choi, J. W., “Adsorption behavior and photoelectric response characteristics of bacteriorhodopsin thin films fabricated by self-assembly technique,” Colloids Surf. B, 23, 327-337 (2002)

Chu, J., Li, X., Zhang, J., Tang, J., “Fabrication and photoelectric response of poly(allylamine hydrochloride)/PM thin films by layer-by-layer deposition technique,” Biochem. Biophys. Res. Commun., 305, 116-121 (2003)

Decher, G., “Fuzzy nanoassemblies: toward layered polymeric multicomposites,” Science, 277, 1232-1237 (1997)

Der, A., Toth-boconadi, R., Keszthelyi, L., Kramer, H., Stoecknius, W., “Orientation of purple membrane in combined electric and magnetic fields,” FEBS Lett., 337 419-420 (1995)

Der. A., Keszthelyi, L., “Charge motion during the photocycle of bacteriorhodopsin,” Biochemistry, 66, 1234-1248 (2001)

Dunach, M., Seigneurt, M., Rigaud, J. L., Padrbs, E., “Influence of cations on the blue to purple transition of bacteriorhodopsin : comparison of Ca2+ and Hg2+ binding and their effect on the surface potential,” J. Biol. Chem., 263, 17378-17384 (1988)

Fukuzawa, K., Yanagisawa, K., Kuwano, H., “Photoelectrical cell utilizing bacteriorhodopsin on a hole array fabricated by micromachining techniques,” Sens. Actuators, B, 30, 121-126 (1996)

Gardner, T. J., Frisbie, C. D., Wrighton, M., “Systems for orthogonal self-assembly of electroactive monolayers on Au and ITO: an approach to molecular electronics,” J. Am. Chem. Soc., 117, 6927-6933 (1995)

George, J., Menon, C.S., “Electrical and optical properties of electron beam evaporated ITO thin films,” Surf. Coat. Technol., 132, 45-48 (2000)

Gergely, C., Zimanyi, L., Varo, G., “Bacteriorhodopsin intermediate spectra determined over a wide pH range,” J. Phys. Chem., 101, 9390-9395 (1997)

Glozak, M. A., Sengupta, N., Zhang, X., Seto, E., “Acetylation and deacetylation of non-histone proteins,” Gene, 363, 15-23 (2005)

Govindjee, R., Ohno, K., Ebrey, T. G., “Effect of the removal of the COOH-terminal region of bacteriorhodopsin on its lightinduced H+ changes,” Biophys. J., 38, 85-87 (1982)

Griffiths, J. A., King, J., Yang, D., Browner, R., El-Sayed, M. A., “Calcium and magnesium binding in native and structurally perturbed purple membrane,” J. Phys. Chem., 100, 929-933 (1996)

Gu, L. Q., Zhang, C. P., Niu, A. F., Li, J., Zhang, G. Y., Wang, Y. M., Tong, M. R., Pan, J. L., Song, Q. W., Parsons, B., Birge, R. R., “Bacteriorhodopsin based photonic logic gate and its applications to grey level image subtraction,” Opt. Lett., 131, 25-30 (1996)

Habeeb, A. F. S. A., “Determination of free amino groups in proteins by trinitrobenzenesulfonic acid,” Anal. Biochem., 14, 328-336 (1966)

Hampp, N. A., “Bacteriorhodopsin: mutating a biomaterial into an optoelectronic material,” Appl. Microbiol. Biotechnol., 53, 633-639 (2000a)

Hampp, N., “Bacteriorhodopsin as a hotochromic retinal protein for optical memories,” Chem. Rev., 100, 1755-1776 (2000b)

Harada, Y., Yasuda, K., Nomura, S., Kajimura, N., Sasaki, Y. C., “Vectorially oriented fixation of membrane-embedded bacteriorhodopsin onto an inert base,” Langmuir, 14, 1829-1835 (1998)

Haupts, U., Tittor, J. Bamberg, E. Oesterhelt, D. “General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model,” Biochemistry, 36, 2-7 (1997)

He, J. A., Samuelson, L., Li, L., Kumar, J.,Tripathy, S. K., “Bacteriorhodopsin thin film assemblies-immobilization, properties, and applications,” Adv. Mater., 11, 435-466, (1999)

He, J. A., Samuelson, L., Li. L., Kumar, J., Tripathy, S. K., “Oriented Bacteriorhodopsin/ polycation multilayers by electrostatic layer-by-layer assembly,” Langmuir, 14, 1674-1679 (1998a)

He, J. A., Samuelson, L., Li. L., Kumar, J., Tripathy, S. K., “Photoelectric properties of oriented bacteriorhodopsin/polycation multilayers by electrostatic layer-by-layer assembly,” J. Phys. Chem. B, 102, 7067-7072 (1998b)

Henderson, R., Jubb, J. S., Whytock, S. “Specific labelling of the protein and lipid on the extracellular surface of purple membrane,” J. Mol. Biol., 123, 259-274 (1978)

Ho, D., Chu, B., Lee, H., Montemagno, C. D., “Directed protein orientation by site-specific labeling,” IEEE Proc. Nanotechnol., 12-14 (2003)

Huang, Y., Wu, S. T., Zhao, Y., “All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics,” Opt. Express, 12, 895-906 (2004)

Hurley, J. B., “Ebrey, T. M. energy transfer in the purple membrane of Halobacterium Halobium,” Biophys. J., 22, 49-66 (1978)

Ikonen, M., Peltonen, J., Vuorimaa, E., Lemmetyinen, H., “Study of photocycle and spectral properties of bacteriorhodopsin in Langmuir-Blodgett films,” Thin Solid Films, 213, 277-284 (1992)

Jin, Y., Friedman, N., Cahen, D., Sheves, M., “Chemically induced enhancement of the opto-electronic response of Halobacterium purple membrane monolayer,” Chem. Commun., 12, 1310-1312 (2006)

Jussila, T., Li, M., Ykachenko, N. V., Parkkine, S., Li, B., Jiang, L., Lemmetyinen, H., “Transient absorption and photovoltage study of self-assembled bacteriorhodopsin polycation multilayer films,” Biosens. Bioelectron., 17, 509-515 (2002)

Kandori, H., “Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin,” Biochim. Biophys. Acta, 1658, 72-79 (2004)

Kaulen, A. D., “Electrogenic processes and protein conformational changes accompanying the bacteriorhodopsin photocycle,” Biochim. Biophys. Acta., 1460, 204-219 (2000)

Khorana, H. G., Gerbert, G. E., Herlihy, W. C., Gray, C. P., Andereggt, R. J., Nihei, K., Biemann, K., “Amino acid sequence of bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA, 76, 5046-5050 (1979)

Khorana, H.G., “Bacteriorhodopsin, a membrane protein that uses light to translocate proton,” J. Biol. Chem., 263, 7439-7442 (1988)

Kolodner, P., Lukashev, E. P., Ching, Y. C., Rousseau, D. L., “Electric-field-induced Schiff-base deprotonation in D85N mutant bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA, 93, 11618-11621 (1996)

Konry, T., Marks, R. S., “Physico-chemical studies of indium tin oxide-coated fiber optic biosensors,” Thin Solid Film, 492, 313-321 (2005)

Koyama, K., Miyasaka, T., “The proton uptake channel of bacteriorhodopsin as studied by a photoelectrochemical method,” Bioelectrochemistry, 53, 111-118 (2000)

Koyama, K., Yamaguchi, N., Miyasaka, T., “Molecular organization of bacteriorhodopsin films in optoelectronic devices,” Adv. Mater., 7, 590-594 (1995)

Krebs, M. P., Mollaaghababa, R., Khorana, H. G., “Gene replacement in Halobacterium halobium and expression of bacteriorhodopsin mutants,” Proc. Natl. Acad. Sci. USA, 90, 1987-1991 (1993)

Lanyi, J. K., “Proton transfers in the bacteriorhodopsin photocycle,” Biochim. Biophys. Acta, 1757, 1012-1018 (2006)

Li, B. F., Li, J. R., Song, Y. C., Jiang, L., “A study of the improvement of photoelectric responses on a Langmuir-Blodgett film containing bacteriorhodopsin,” Mater. Sci. Eng., C3 , 219-222 (1995)

Liu, S. Y., Kono, M., Ebrey, T. G., “Effect of pH buffer molecules on the light-induced currents from oriented purple membrane,” Biophys. J., 60, 204-216 (1991)

Ludmann, K., Gergely, C., Der, A., Varo, G., “Electric signals during the bacteriorhodopsin photocycle, determined over a wide pH range,” Biophys. J., 75, 3120-3126 (1998)

Lukashev, E. P., Robertson, B., “Bacteriorhodopsin retains its light-induced proton-pumping function after being heated to 140°C,” Bioelectrochem. Bioenerg., 37, 157-160 (1995)

Maeda, A., Takeuchi, Y., Yoshizawa, T., “Absorption spectral properties of acetylated bR in purple membrane depending on pH,” Biochemistry, 21, 4479-4483 (1982)

Min, J., Choi, H.G., Choi, J. W., Lee, W. H., Kim, U. R., “Optimal fabrication condition of bacteriorhodopsin films by electrophoretic sedimentation technique,” Supramol. Sci., 5, 687-690 (1998)

Mo, X., Krebs, M. P., Yu, S. M., “Directed synthesis and assembly of nanoparticles using purple membrane,” Small, 2, 526-529 (2006)

Muneyuki, E., Okuno, D., Yoshida, M., Ikai, A., Arakawa, H., “A new system for the measurement of electrogenicity produced by ion pumps using a thin polymer film: examination of wild type bacteriorhodopsin and the D96N mutant over a wide pH range,” FEBS Lett., 427, 109-114 (1998)

Murata, K., Hoshino, T., Sato, Y., Hata, M., Tsuda, M., “Unidirectional proton transfer mechanism in the LMN sequence of bacteriorhodopsin,” J. Mol. Struct., 664-665, 125-133 (2003)

Nicolini, C., Erokhin, V., Paddeu, S., Paternolli, C., Ram, M. K., “Toward bacteriorhodopsin based photocells,” Biosens. Bioelectron., 14, 427-433 (1999)

Nicolini, C., Erokhin, V., Paddeu, S., Sartore, M., “Towards a light-addressable transducer bacteriorhodopsin based,” Nanotechnol., 9, 223-227 (1998)

Oka, T., Yagi, N., Tokunaga, F., Kataoka, M., “Time-resolved X-Ray diffraction reveals movement of F helix of D96N bacteriorhodopsin during M-MN transition at neutral pH,” Biophys. J., 82, 2610-2616 (2002)

Okada, K., Shimazu, M., Kameshima, Y., Nakajima, A., MacKenzie, K. J. D., “Simultaneous uptake of Ni2+, NH+4 and PO3-4 by amorphous CaO–Al2O3–SiO2 compounds.” J. Colloid. Interface Sci., 305, 229-238 (2007)

Okada-Shudo, Y., Yamaguchi, I., Tomioka, H., Sasabe, H., “Real-time image processing using polarization discrimination of bacteriorhodopsin,” Synth. Met., 81, 147-149 (1996)

Okumura, H., Murakami, M., Kouyama, T., “Crystal structures of acid blue and alkaline purple forms of bacteriorhodopsin,” J. Mol. Biol., 351, 481-495 (2005)

Pandey, P. C., “Bacteriorhodopsin-Novel biomolecule for nano devices,” Anal. Chim. Acta, 568, 47-56 (2006)

Pandey, P. C., Upadhyay, B. C., Pandey, C. M. D., Pathak, H. C., “Electrochemical studies on D96N bacteriorhodopsin and its application in the development of photosensors,” Sens. Actuators B, 56, 112-120 (1999)

Philias, J. M., Marsan, B., “All-solid-state photoelectrochemical cell based on a polymer electrolyte containing a new transparent and highly electropositive redox couple,” Electro. Acta, 44, 2915-2926 (1999)

Polevoda, B., Sherman, F., “The diversity of acetylated proteins,” Genome Biol., 3, 1-6 (2002)

Popovich, N.D., Eckhardt, A.E., Mikulecky, J.C., Napier, M.E., Thomas, R.S., “Eletrochemical sensor for dectection of unmodified nucleic acids,” Yalanta 56, 821-828 (2002)

Riordan, J. F., Vallee, B. L., “Acetylation,” Methods Enzymol., 25, 494-499 (1972)

Robertson, B., Lukashev, E. P., “Rapid pH change due to bacteriorhodopsin measured with a tin-oxide electrode,” Biophys. J., 68, 1507-1517 (1995)

Saga, Y., Watanabe, T., Koyama, K., Miyasaka, T., “Buffer effect on the photoelectrochemical response of bacteriorhodopsin,” Anal. Sci., 15, 365-369 (1999)

Sapra, K. T., Besir, H., Oesterhelt, D., Muller, D. J., “Characterizing molecular interactions in different bacteriorhodopsin assemblies by single-molecule force spectroscopy,” J. Mol. Biol., 355, 640-650 (2006)

Sharma, M. K., Jattani, H., Gilchrist, M. L., “Bacteriorhodopsin conjugates as anchors for supported membranes,” Bioconjug. Chem., 15, 942-947 (2004)

Shinar, R., Druckmann, S., Ottolenghi, M., Korenstein, R., “Electric field effects in bacteriorhodopsin,” Biophys. J., 19, 1-5 (1977)

Singh, K., Korenstein, R., Lebedeva, H., Caplan, S. R., “Photoelectric conversion by bacteriorhodopsin in charged synthetic membranes,” Biophys. J., 31, 393-402 (1980)

Song, Q. W., Zhang, C., Gross, R. B., Birge, R. R., “The intensity-dependent refractive index of chemically enhanced bacteriorhodopsin,” Opt. Lett., 112, 296-301 (1994)

Stickrath, J. X., Bhattacharya, J. N., Varo, G., Hillebrecht, J. R., Ren, L., Birge, R. R., “Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling,” Biophys. J., 85, 1128-1134 (2003)

Stuart, J. A., Marcy, D. L., Wise, K. J., Birge, R. R., “Volumetric optical memory based on bacteriorhodopsin,” Synth. Met., 127, 3-15 (2002)

Sugiyama, Y., Inoue, T., Ikematsu, M., Iseki, M., Sekiguchi, T., “Controlling the orientation of purple membrane fragments on an air water interface by a new method of direct electric field application during purple membrane spreading,” J. Appl. Phys., 36, 5674-5679 (1997)

Szundi, I., Stoeckenius, W. “Effect of lipid surface charges on the purple-to-blue transition of bacteriorhodopsin,” Proc. Natl. Acad. Sci. USA, 84, 3681-3684 (1987)

Takeuchi, Y., Ohno, K., Yoshida, M., “Light-induced proton dissociation and association in bacteriorhodopsin,” Photochem. Photobiol., 33, 587-592 (1981)

Thoma, R., Hampp, N., Brauchle, C., “Bacteriorhodopsin films as spatial light modulators for nonlinear-optical filtering,” Opt. Lett., 16, 651-653 (1991)

Toth-Boconadi, R., Taneva, S. G., Keszthelyi, L., “Electric signals of light excited bacteriorhodopsin mutant D96N,” J. Photochem. Photobiol. B, Biol., 65, 122-126 (2001)

Varo, G., Brown, L. S. Needleman. R., Lanyi, J. K., “Binding of calcium ions to bacteriorhodopsin,” Biophys. J., 76, 3129-3226 (1999)

Varo, G., Lanyi, J. K., “Thermodynamics and energy coupling in the bacteriorhodopsin photocycle,” Biochemistry, 30, 5016-5022 (1991)

Vengadesh, P., Majid, W. H. A., Shanmugam, S. A., Low, K. S., “Fabrication and photoresponse of novel carboxymethylcellulose (CMC) based bacteriorhodopsin (bR) sensor,” Org. Electron., 7, 300-304 (2003)

Wang, J. P., Song, L., Yoo, S. K., El-sayed, M. A., “A comparison of the photoelectric current responses resulting from the proton pumping process of bacteriorhodopsin under pulsed and CW laser excitations,” J. Phys. Chem. B, 101, 10599-10604 (1997a)

Wang, J. P., Yoo, S. K., Song, L., El-sayed, M. A., “Molecular mechanism of the differential photoelectric response of bacteriorhodopsin,” J. Phys. Chem. B, 101, 3420-3423 (1997b)

Wang, G., Wang, A. J., Hu, K. S., “Tryptophan fluorescence quenching by alkaline earth metal cations in deionized bacteriorhodopsin,” J. Photochem. Photobiol. B, 59, 38-41 (2000a)

Wang, J., “Vectorially oriented purple membrane: characterization by photocurrent measurement and polarized-Fourier transform infrared spectroscopy,” Thin Solid Films, 379, 224-229 (2000b)

Wang, L., Shen, Z., Wang, J., Li, B., Chen, F., Yang, W., Feng, X., “The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light,” Biochem. Biophys. Res. Commun., 343, 899-903 (2006a)

Wang, W. W., Knopf, G. K., Bassi, A. S., “Photoelectric properties of a detector based on dried bacteriorhodopsin film,” Biosens. Bioelectron., 21, 1309-1319 (2006b)

Weetall, H. H., Druzhko, A. B., “Optical and electrical characteristics of bacteriorhodopsin gelatin films and tin-oxide coated electrodes,” Curr. Appl Phys., 3, 281-291 (2003)

Weetall, H. H., Samuelson, L. A., “Optical and electrical properties of bacteriorhodopsin Langmuir-Blodgett films,” Thin Solid Films, 312, 306-312 (1998)

Yao, B., Wang, Y., Hu, K., Chen, D., Zheng, Y., Lei, M., “Mechanisms of pulse response and differential response of bacteriorhodopsin and their relations,” Photochem. Photobiol., 76, 545-548 (2002)

Yao, B., Wang, Y., Lei, M., Zheng, Y., “Characteristics and mechanisms of the two types of photoelectric differential response of bacteriorhodopsin-based photocell,” Biosens. Bioelectron., 19, 283-287 (2003a)

Yao, B., Xu, D., Hou, X., Hu, K., Wang, A., “Kinetics of picosecond laser pulse induced charge separation and proton transfer in bacteriorhodopsin,” J. Biomed. Opt., 8, 48-52 (2003b)

Yuan, L., Li, B., Jiang, L., “Photoelectric responses of Langmuir-Blodgett film containing bacteriorhodopsin on ITO modified with polypyrrole film,” Thin Solid Films, 340, 262-264 (1999)

Zhang, G., Li, B., Zhang, J., “A study on the fabrication of chemically modified bacteriorhodopsin film and its photochemical properties,” Biochem. Biophys. Res. Commun., 313, 733 (2004)

Zhang, C., Chen, G., Wei, X., Guo, Z., Tian, J., Wang, X., Zhang, G., Song, Q. W., “Optical novelty filter using bacteriorhodopsin film,” Opt. Lett., 30, 81-83 (2005a)

Zhang, G., Li, B., Zhang, J., “The photochemical conversion in the chemically modified bacteriorhodopsin using polyvinyl alcohol as the protectant,” Colloids Surf A, 257-258, 473-477 (2005b)

Zhang, Y. H., Song, Q. W., Tseronis, C., Birge, R. R., “Real-time holographic imaging with a bacteriorhodopsin film,” Opt. Lett., 20, 2429-2431 (1995)

Zhu, F., Huan, C.H.A., Zhang, K., Wee, A.T.S., “Investigation of annealing effects on indium tin oxide thin films by electron energy loss spectroscopy,” Thin Solid Film, 359, 244-250 (2000)

無法下載圖示 全文公開日期 2013/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE