簡易檢索 / 詳目顯示

研究生: 林紹均
Shao-Jyun Lin
論文名稱: 應用於熱療之CMOS恆溫微波加熱器單晶片
A Monolithic CMOS Thermostatic Microwave Heater for Thermotherapy
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 姚嘉瑜
Chia-Yu Yao
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 66
中文關鍵詞: 溫度感測器微波加熱加熱器仿生組織單晶片
外文關鍵詞: Temperature sensor, Microwave heating, Heat applicator, Tissue mimicking phantoms, Monolithic heater
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中使用台積電CMOS 0.18 um 1P6M製成,設計並實作了一個應用於熱療微波加熱回授溫控系統。加熱器採用由2.4 GHz的震盪器(LC-Oscillator) 作為微波訊號源,再通過功率放大器(Power Amplifier)提高微波功率。功率放大器的負載電感器被作為熱施加器,並採用負載補償技術來增強其附近的電場。該加熱器之功耗為136 mW,可以提供25.36 mW (14 dBm)的射頻輸出功率,達到 0.24 °C/min的加熱速率及34.4 J/°C的加熱效率。此外,使用以時間數位轉換器(Time to Digital Converter)為基礎的溫度傳感器提高系統的穩定性。此溫度感測器實現了0.054°C的解析度,適合使用於生物醫學相關應用。在經過兩點校正後,在25 °C至45 °C的溫度範圍內,其誤差為 ± 0.2 °C。溫度傳感器在每次取樣時的功耗為0.65 uJ。


    A monolithic microwave heater with thermostatic function and TDC-based temperature sensor is implemented for thermotherapy using TSMC CMOS 0.18 um technology. The heater uses a 2.4 GHz oscillator as the microwave source and its microwave power is raised by a power amplifier. The load inductor of the power amplifier is used as the heat applicator and the load compensation technique is adopted to enhance the electric field in its vicinity. Consuming 136 mW, the heater delivers the RF output power of 25.36 mW (14 dBm). The heating rate of 0.24 °C/min and heating efficiency of 34.4 J/°C is achieved. The stability of system is improved by using a TDC based temperature sensor. The resolution of 0.054 °C is achieved by the temperature sensor, which is suitable for biomedical applications. After the two-point calibration, the accuracy is ± 0.2 °C in the temperature range from 25 °C to 45 °C. The power consumption of temperature sensor for each sample is 0.65 uJ.

    摘要 IV Abstract V 致謝 VI Contents VIII List of Figures IX List of TABLEs XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Microwave Heat Theory 3 1.3 Selective Microwave Experiment 5 1.4 Organization 10 Chapter 2 Temperature sensor 11 2.1 Architecture of Temperature Sensor 11 2.2 Design flow of TDC based temperature 13 2.3 Temperature-to-pulse generator (TPG) 15 2.4 Time-to-digital converter (TDC) 17 2.5 Measurement Result 24 Chapter 3 Microwave Heater 30 3.1 System Architecture 30 3.2 Heat Applicator 33 3.3 LC-oscillator 34 3.4 Power Amplifier 36 3.5 Measurement Result of Microwave Heater 40 3.7 Measurement Result of Microwave Heater with Thermostat Function 44 Chapter 4 Conclusion 47 Reference 51

    [1] S. Santaniello, G. Fiengo, L. Glielmo and W. M. Grill, "Closed-Loop Control of Deep Brain Stimulation: A Simulation Study," in IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 19, no. 1, pp. 15-24, Feb. 2011, doi: 10.1109/TNSRE.2010.2081377.
    [2] C. -H. Cheng et al., "A Fully Integrated 16-Channel Closed-Loop Neural-Prosthetic CMOS SoC With Wireless Power and Bidirectional Data Telemetry for Real-Time Efficient Human Epileptic Seizure Control," in IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3314-3326, Nov. 2018, doi: 10.1109/JSSC.2018.2867293.
    [3] Tzu-Yu Tseng, Hsiao-Chin Chen and Hung-Wei Chiu, "Monolithic CMOS Microwave Heater with Programmable Thermostat Function for Thermotherapy", IEEE Trans. Circuits Syst. II, Exp. Briefs ( Early Access ), July 2020.(SCI)
    [4] Chun-Chi Chen, Poki Chen, Chorng-Sii Hwang and Wei Chang, "A precise cyclic CMOS time-to-digital converter with low thermal sensitivity," in IEEE Transactions on Nuclear Science, vol. 52, no. 4, pp. 834-838, Aug. 2005, doi: 10.1109/TNS.2005.852708.
    [5] J. P. Jordan, “Application of vacuum-tube oscillators to inductive and dielectric heating in industry,” Electrical Eni., vol. 61, no. 11, pp. 831-834, Nov. 1942.
    [6] D. Wetz, D. Landen, S. Satapathy and D. Surls, “Inductive heating of materials for the study of high temperature mechanical properties,” IEEE Trans. Dielectrics and Electrical Insulation, vol. 18, no. 4, pp. 1342-1351, Aug. 2011.
    [7] Handbook of Microwave Technology for Food Applications, Marcel Dekker Inc., New York, NY, USA, 2001.
    [8] D. Kim, K. Kim, J. Oh, J. Cho, C. Cheon and Y. Kwon, “A K-Band Planar Active Integrated Bi-Directional Switching Heat Applicator With Uniform Heating Profile,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 10, pp. 2581-2587, Oct. 2009.
    [9] T. Yilmaz, R. Foster and Y. Hao, "Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glucose Levels," in IEEE Transactions on Antennas and Propagation, vol. 62, no. 6, pp. 3064-3075, June 2014.
    [10] D. Wetz, D. Landen, S. Satapathy and D. Surls, “Inductive heating of materials for the study of high temperature mechanical properties,” IEEE Trans.
    [11] P. Chen, S.-L. Liu, and J. Wu, “A CMOS pulse-shrinking delay element for time interval measurement,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47, no. 9, pp. 954–958, Sep. 2000.
    [12] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and
    threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 7,pp. 876–884, Jul. 2001.
    [13] T. Yilmaz, R. Foster, Yang Hao, "Broadband Tissue Mimicking Phantoms and a Patch Resonator for Evaluating Noninvasive Monitoring of Blood Glu-cose Levels", Antennas and Propagation IEEE Transactions on, vol. 62, no. 6, pp. 3064-3075, June 2014.
    [14] S. Pan and K. A. A. Makinwa, "A 6.6-μW Wheatstone-Bridge Temperature Sensor for Biomedical Applications," in IEEE Solid-State Circuits Letters, vol. 3, pp. 334-337, 2020, doi: 10.1109/LSSC.2020.3019078.
    [15] A. Vaz et al., "Full Passive UHF Tag With a Temperature Sensor Suitable for Human Body Temperature Monitoring," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 57, no. 2, pp. 95-99, Feb. 2010, doi: 10.1109/TCSII.2010.2040314.
    [16] M. Law, S. Lu, T. Wu, A. Bermak, P. Mak and R. P. Martins, "A 1.1 uW CMOS Smart Temperature Sensor With an Inaccuracy of ±0.2 °C 3σ for Clinical Temperature Monitoring," in IEEE Sensors Journal, vol. 16, no. 8, pp. 2272-2281, April15, 2016, doi: 10.1109/JSEN.2016.2518706.
    [17] A. Rosen and F. Sterzer, “Applications of microwave heating in medicine,” IEEE MTT Symp, Dig., 1994, pp. 1615-1618 vol.3.
    [18] M. H. Falk and R. D. Issels, “Hyperthermia in oncology,” Int. J. Hypertherm., vol. 17, pp. 1–18, 2001.
    [19] K. Souri, Y. Chae, and K. Makinwa, "A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from -55 to 125°C," in 2012 IEEE International Solid-State Circuits Conference,2012, pp. 208-210
    [20] L. Yu-Shiang, D. Sylvester, and D. Blaauw, "An ultra low power 1V, 220nW temperature sensor for passive wireless applications," in 2008 IEEE Custom Integrated Circuits Conference,2008, pp. 507-510
    [21] P. Chen, C. Chen, Y. Peng, K. Wang and Y. Wang, "A Time-Domain SAR Smart Temperature Sensor With Curvature Compensation and a 3σ Inaccuracy of −0.4°C ∼ +0.6°C Over a 0°C to 90°C Range," in IEEE Journal of Solid-State Circuits, vol. 45, no. 3, pp. 600-609, March 2010, doi: 10.1109/JSSC.2010.2040658.
    [22] K. Souri and K. Makinwa, "A 0.12mm2 7.4μW micropower temperature sensor with an inaccuracy of ±0.2°C (3σ) from −30°C to 125°C," 2010 Proceedings of ESSCIRC, 2010, pp. 282-285, doi: 10.1109/ESSCIRC.2010.5619828.

    無法下載圖示 全文公開日期 2031/10/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE