簡易檢索 / 詳目顯示

研究生: 曾子宇
Tzu-Yu Tseng
論文名稱: 具可程式恆溫功能之單晶微波加熱器
Monolithic Microwave Heater with Programmable Thermostat Function
指導教授: 呂政修
Jenq-Shiou Leu
陳筱青
Hsiao-Chin Chen
口試委員: 呂政修
Jenq-Shiou Leu
陳筱青
Hsiao-Chin Chen
阮聖彰
Shanq-Jang Ruan
林淵翔
Yuan-Hsiang Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 58
中文關鍵詞: 加熱器微波加熱單晶片溫度感測器仿生組織
外文關鍵詞: heat applicator, microwave heating, monolithic heater, temperature sensor, tissue mimicking phantoms
相關次數: 點閱:222下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中使用台積電 CMOS 0.18 μm 1P6M 製程,設計並實作了一個應用於熱療的微波加熱回授溫控系統。由2.4 GHz的震盪器(LC-Oscillator)產生微波訊號至可調電壓放大器增強,此外,放大器的負載電感用於發射訊號加熱待測物,微波加熱器加上可調溫度感測器(Tunable Temperature Sensor)、11-bit連續漸進式類比數位轉換器(Successive Approximation Analog-to-Digital Converter)以及數位比較器組成具有恆溫功能之微波加熱器。
    放大器、振盪器、溫度感測器和類比數位轉換器的消耗功率分別為113, 1.4, 0.83, 4.17 毫瓦。根據模擬結果,放大器的PE/PAE達到18.7 %/17.7 %,藉此可以估算出微波輸出功率為13.2 dBm。溫度感測器的感測範圍從10 ℃ 到 50 ℃,其靈敏度為47 mV/℃。當80毫克的的洋菜仿生肌肉組織被放置於加熱器的電感上方加熱60分鐘,成功使仿生物的溫度上升4 ℃。當恆溫功能開啟時,仿生物的溫度能固定在0.5 ℃、1.0 ℃以及1.5 ℃。整體消耗功率為119 mW。


    In this thesis, a monolithic microwave heater with programmable thermostat function for thermotherapy is proposed and implemented using TSMC CMOS 0.18-μm 1P6M process. To achieve microwave heating, the heater adopts a 2.4-GHz oscillator to generate the microwave and uses an amplifier with LC resonance load to enhance the signal strength. Moreover, the load inductor of amplifier is used as a heat applicator. The microwave heater is then integrated with temperature sensors, a 11-bit successive-approximation analog-to-digital converter (SAR-ADC) and a digital comparator to achieve the thermostat function.
    The amplifier, oscillator, temperature sensor and ADC consume the power of 113, 1.4, 0.83, 4.17 mW respectively. According to simulation, the amplifier can achieve the PE/PAE of 18.7 %/17.7 %. The output power of 13.2 dBm can be estimated. The temperature detection range of the temperature sensors is from 10 ℃ to 50 ℃, where the temperature sensitivity of sensors is 47 mV/℃. When the 80-mg muscle mimicking agar phantoms are placed above the inductor, the heater can achieve the programmed temperature increases of 0.5, 1.0 and 1.5 °C with the variation of 0.2 °C. The total power consumption of system is 119 mW.

    摘要 II Abstract V 致謝 VI Contents VII List of Figures IX List of TABLEs XII Chapter 1 Introduction 1 1.1. Motivation 1 1.2. Microwave Heating Theory 3 1.3. Previously Work 4 1.4. Organization 6 Chapter 2 Monolithic Microwave Heater with Programmable Thermostat Function 7 2.1. Design of Building Blocks 9 2.1.1. Heat Applicator 9 2.1.2. Temperature Sensor 15 2.1.3. Electromagnetic Simulation 18 2.1.4. Analog-to-Digital Converter 19 2.2. System Operation 28 Chapter 3 Experimental Result 30 3.1. Heat Applicator Measurement Results 31 3.2. Temperature Sensor Measurement Results 32 3.3. Analog-to-Digital Converter Measurement Results 33 3.4. Microwave Heating Experiment 35 3.4.1. Microwave Heating Experiment 35 3.4.2. Microwave Heating Experiment Result 37 3.5. Thermostat Experiment 39 Chapter 4 Conclution 43 Reference 45

    [1] M. Borecki et al., “Fiber Optic Capillary Sensor with Smart Optode for Rapid Testing of the Quality of Diesel and Biodiesel Fuel”, Int. J. Advances in Systems and Mea., vol 7 no 1 & 2, 2014, 57-67.
    [2] M. Placinta, M. C. Shen, M. Achermann, and R. O. Karlstrom, “A Laser Pointer Driven Microheater for Precise Local Heating and Conditional Gene Regulation In Vivo. Microheater Driven Gene Regulation in Zebrafish,” BMC Dev. Biol., 9(1), p. 73, 2009.
    [3] A. Rosen and F. Sterzer, “Applications of microwave heating in medicine,” IEEE MTT Symp, Dig., 1994, pp. 1615-1618 vol.3.
    [4] F. Sterzer, “Microwave medical devices,” IEEE Microw. Mag., vol. 3, pp. 65-70, Mar 2002.
    [5] M. H. Falk and R. D. Issels, “Hyperthermia in oncology,” Int. J. Hypertherm., vol. 17, pp. 1–18, 2001.
    [6] D. Kim, K. Kim, J. Oh, J. Cho, C. Cheon and Y. Kwon, “A K-Band Planar Active Integrated Bi-Directional Switching Heat Applicator With Uniform Heating Profile,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 10, pp. 2581-2587, Oct. 2009.
    [7] K. Kim, T. Seo, K. Sim and Y. Kwon, "Magnetic Nanoparticle-Assisted Microwave Hyperthermia Using an Active Integrated Heat Applicator," IEEE Trans. Microwave Theory Tech., vol. 64, no. 7, pp. 2184-2197, July 2016.
    [8] M. Gęca, T. Lizak, A. Kociubiński, M. Borecki, M. L. Korwin-Pawlowski, “Nichrome micro-heaters as actuators for microfluidic sensors,” Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, Sept. 2016
    [9] M. Megayanti, C. Panatarani and I. M. Joni, “Development of microheaters for gas sensor with an AT-Mega 8535 temperature controller using a PWM (pulse width modulation) method” AIP Conf., vol 1719, no. 1, Mar. 2016
    [10] M. Borecki, M. Gęca, M. Duk and M.L. Korwin-Pawlowski, “Miniature Gas Sensors Heads and Gas Sensing Devices for Environmental Working Conditions - A Review”, J. Elec. Commu. Eng. 2017.
    [11] M. Gęca, M. Borecki, and A. Kociubiński “Multiparametric capillary sensor: stabilization of local heating”, Proc. SPIE 10808, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments vol. 10808, Oct. 2018
    [12] Hong-Qi Xiao, ”Monolithic CMOS microwave heaters”, NTUST thesis, 2018
    [13] J. P. Jordan, “Application of vacuum-tube oscillators to inductive and dielectric heating in industry,” Electrical Eni., vol. 61, no. 11, pp. 831-834, Nov. 1942.
    [14] D. Wetz, D. Landen, S. Satapathy and D. Surls, “Inductive heating of materials for the study of high temperature mechanical properties,” IEEE Trans. Dielectrics and Electrical Insulation, vol. 18, no. 4, pp. 1342-1351, Aug. 2011.
    [15] Handbook of Microwave Technology for Food Applications, Marcel Dekker Inc., New York, NY, USA, 2001.
    [16] Hsiao-Chin Chen, Hong-QI Xiao and Tzu-Yu Tseng, “A Monolithic CMOS Microwave Heater”, accepted for publication in IEEE Trans. Microwave Theory and Tech.
    [17] San-Qing Yang, “An Implantable Biomedical Signal Measurement System for Chronic Disease Monitoring”, NTUST thesis, 2015
    [18] Behzad Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.
    [19] Sung-Min Chin, Chih-Cheng Hsieh, Chin-Fong Chiu and Hann-Huei Tsai, “A New Rail-to-Rail Comparator with Adaptive Power Control for Low Power SAR ADCs in Biomedical Application,” IEEE Int. Symposium on Circuits and Systems, pp.1575-1578, May 2010.

    無法下載圖示 全文公開日期 2024/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE