簡易檢索 / 詳目顯示

研究生: 黃少鏞
Shao-Yung Huang
論文名稱: 基於自主配置的多層室內定位系統設計與實作
Design and implementation of an autonomous configuration based multi-floor indoor positioning system
指導教授: 呂政修
Jenq-Shiou Leu
口試委員: 周承復
Cheng-Fu Chou
錢膺仁
Ying-Ren Chien
黃琴雅
CHIN-YA HUANG
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 多樓層室內定位系統室內定位系統智慧型手機定位系統行人航位推算演算法慣性感測單元建築資訊模型
外文關鍵詞: Multi-Floors Indoor Positioning System, Indoor Positioning System, Smartphone-based Indoor Positioning System, Pedestrian Dead Reckoning, Inertial Measurement Unit, Building Information Modeling
相關次數: 點閱:322下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自古以來,人類便極力於發展準確、穩定的定位系統。隨著智慧型手機(Smartphone)的滲透率逐年攀升,全球衛星導航系統(Global Navigation Satellite Systems, GNSS)廣泛地應用於室外定位(Outdoor Positioning),許多與生活形影不離之適地性服務(Location-Based Service, LBS)皆以GNSS為基礎而延伸。然而,受到陰影效應(Shadowing Effect)與建築物遮蔽所造成訊號衰減等因素,其定位準確度於室內環境中大幅地下降。縱使GNSS於室內表現不佳,室內定位的需求並沒有因此而下降,在室內環境中實現高精準度之定位系統成為了熱門的研究項目。
    本篇論文使用智慧型手機作為定位載具,在零硬體裝置架設於室內環境的條件下,僅利用內建於智慧型手機的感測器實現基於行人航位推算演算法(Pedestrian Dead Reckoning, PDR)的多樓層之室內定位系統(Indoor Positioning System, IPS),並且針對其核心運算參數進行優化,包含移動方向、行走步數及步伐長度,最後結合建築資訊模型(Building Information Modeling, BIM)對預測結果進行最佳化。本篇論文所提出之系統於臺灣科技大學電資學院(建築面積約1,315平方公尺)六至八樓進行試驗,總路徑長達306公尺,並以不同身高、體重之使用者進行實測,定位效果可達到平均誤差2.57公尺。


    Global Navigation Satellite Systems (GNSS) have been widely used in outdoor navigation. However, the problem of signal attenuation and shadowing effect is serious in an indoor environment. Hence, an accurate smartphone-based multi-floors Indoor Positioning System (IPS) that can guide users through indoor environments, where similar corridors and rooms across multiple floors are commonplace, is highly desired.
    In this paper, we have implemented an indoor positioning system using an autonomously configured Pedestrian Dead Reckoning (PDR) scheme without any external sensors on commercially available smartphones. It is able to dynamically adjust core parameters of the PDR during system operation and use the Building Information Modeling (BIM) to optimize predicted results. The system is evaluated in a real practical indoor environment that simulates normal user traveling routes through multiple floors and corridors, conducted by several users with different strides and walking patterns in order to evaluate its performance across different individuals. The evaluation result showed our system can achieve a mean accuracy 2.57m in a multi-level building including an 80m x 16m area on each floor without any floor estimation error.

    論文摘要 I ABSTRACT II 誌謝 III 目錄 IV 圖表索引 V 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 章節提要 3 第 2 章 室內定位相關技術 4 2.1 無線訊號定位 5 2.2 視覺影像定位 8 2.3 慣性感測定位 9 第 3 章 室內定位系統的設計 12 3.1 相對定位系統雛形 14 3.1.1 步伐偵測模組 14 3.1.2 方向偵測模組 18 3.1.3 行人航位推算演算法 20 3.2 自主參數調節之定位演算法 21 3.2.1 樓層偵測模組 21 3.2.2 建築資訊模型 22 3.2.3 多參數之步伐長度校正模組 23 3.3結合建築資訊校正之定位演算法 25 3.3.1 撞牆偵測及校正模組 26 3.3.2 差異校正模組 27 3.3.3 多參數之預測結果校正模組 27 第 4 章 實驗測試與評估結果 28 4.1 實驗工具介紹 28 4.2 實驗環境及流程介紹 30 4.3 評估結果 31 4.3.1 單樓層簡易路徑實驗 31 4.3.2 單樓層困難路徑實驗 34 4.3.3 多樓層單人實驗 36 4.3.4 多樓層多人實驗 43 第5章 結論 49 參考文獻 50

    [1] R. Toledo-Moreo, M. A. Zamora-Izquierdo, B. Ubeda-Minarro, and A. F. Gomez-Skarmeta, "High-Integrity IMM-EKF-Based Road Vehicle Navigation With Low-Cost GPS/SBAS/INS," IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 3, pp. 491-511, 2007, doi: 10.1109/TITS.2007.902642.
    [2] A. Yassin et al., "Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications," IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 1327-1346, 2017, doi: 10.1109/COMST.2016.2632427.
    [3] D. Lymberopoulos and J. Liu, "The Microsoft Indoor Localization Competition: Experiences and Lessons Learned," IEEE Signal Processing Magazine, vol. 34, no. 5, pp. 125-140, 2017, doi: 10.1109/MSP.2017.2713817.
    [4] F. Potortì, A. Crivello, P. Barsocchi, and F. Palumbo, "Evaluation of Indoor Localisation Systems: Comments on the ISO/IEC 18305 Standard," in 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 Sept. 2018 2018, pp. 1-7, doi: 10.1109/IPIN.2018.8533710.
    [5] K.-W. Su, H.-Y. Hsieh, J.-C. Hsu, B.-H. Chen, C.-J. Chang, and J.-S. Leu, "Implementing an iBeacon Indoor Positioning System using Ensemble Learning Algorithm," 2017.
    [6] Z. Zhang, Z. Lu, V. Saakian, X. Qin, Q. Chen, and L. Zheng, "Item-Level Indoor Localization With Passive UHF RFID Based on Tag Interaction Analysis," IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 2122-2135, 2014, doi: 10.1109/TIE.2013.2264785.
    [7] S. Huang, J. Liu, M. Yu, and J. Leu, "A PDR-Based Indoor Positioning System in a Nursing Cart with iBeacon-Based Calibration," in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), 22-25 Sept. 2019 2019, pp. 1-4, doi: 10.1109/VTCFall.2019.8891164.
    [8] Z. Chen, Q. Zhu, and Y. C. Soh, "Smartphone Inertial Sensor-Based Indoor Localization and Tracking With iBeacon Corrections," IEEE Transactions on Industrial Informatics, vol. 12, no. 4, pp. 1540-1549, 2016, doi: 10.1109/TII.2016.2579265.
    [9] J. Liu, J. Jiang, S. Huang, K. Su, M. Yu, and J. Leu, "Practical Evaluation of Smartphone-based Multi-Floors Indoor Positioning System using Enhanced Pedestrian Dead Reckoning and Map Calibration " in 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 25 May - 31 Jul. 2020 2020, pp. 1-5.
    [10] H. Zou, Z. Chen, H. Jiang, L. Xie, and C. Spanos, "Accurate indoor localization and tracking using mobile phone inertial sensors, WiFi and iBeacon," in 2017 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), 27-30 March 2017 2017, pp. 1-4, doi: 10.1109/ISISS.2017.7935650.
    [11] I. Bisio et al., "A Trainingless WiFi Fingerprint Positioning Approach Over Mobile Devices," IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 832-835, 2014, doi: 10.1109/LAWP.2014.2316973.
    [12] R. Guan and R. Harle, "Signal Fingerprint Anomaly Detection for Probabilistic Indoor Positioning," in 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 24-27 Sept. 2018 2018, pp. 1-8, doi: 10.1109/IPIN.2018.8533867.
    [13] V. Andrushchak, T. Maksymyuk, M. Klymash, and D. Ageyev, "Development of the iBeacon’s Positioning Algorithm for Indoor Scenarios," in 2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T), 9-12 Oct. 2018 2018, pp. 741-744, doi: 10.1109/INFOCOMMST.2018.8632075.
    [14] I. Guvenc and C. Chong, "A Survey on TOA Based Wireless Localization and NLOS Mitigation Techniques," IEEE Communications Surveys & Tutorials, vol. 11, no. 3, pp. 107-124, 2009, doi: 10.1109/SURV.2009.090308.
    [15] C. Feng, W. S. A. Au, S. Valaee, and Z. Tan, "Received-Signal-Strength-Based Indoor Positioning Using Compressive Sensing," IEEE Transactions on Mobile Computing, vol. 11, no. 12, pp. 1983-1993, 2012, doi: 10.1109/TMC.2011.216.
    [16] A. Xiao, R. Chen, D. Wu, and Y. Chen, "Positioning in Large Indoor Spaces using Smartphone Camera based on Static Objects," in 2018 Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS), 22-23 March 2018 2018, pp. 1-7, doi: 10.1109/UPINLBS.2018.8559754.
    [17] W. Elloumi, A. Latoui, R. Canals, A. Chetouani, and S. Treuillet, "Indoor Pedestrian Localization With a Smartphone: A Comparison of Inertial and Vision-Based Methods," IEEE Sensors Journal, vol. 16, no. 13, pp. 5376-5388, 2016, doi: 10.1109/JSEN.2016.2565899.
    [18] C. Szegedy et al., "Going deeper with convolutions," in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7-12 June 2015 2015, pp. 1-9, doi: 10.1109/CVPR.2015.7298594.
    [19] K. He, X. Zhang, S. Ren, and J. Sun, "Deep Residual Learning for Image Recognition," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90.
    [20] S. Ren, K. He, R. Girshick, and J. Sun, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137-1149, 2017, doi: 10.1109/TPAMI.2016.2577031.
    [21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 27-30 June 2016 2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.
    [22] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, "Estimation of IMU and MARG orientation using a gradient descent algorithm," in 2011 IEEE International Conference on Rehabilitation Robotics, 29 June-1 July 2011 2011, pp. 1-7, doi: 10.1109/ICORR.2011.5975346.
    [23] R. Mahony, T. Hamel, and J. Pflimlin, "Nonlinear Complementary Filters on the Special Orthogonal Group," IEEE Transactions on Automatic Control, vol. 53, no. 5, pp. 1203-1218, 2008, doi: 10.1109/TAC.2008.923738.

    QR CODE