簡易檢索 / 詳目顯示

研究生: Hailemichael Tegenu Gebrie
Hailemichael Tegenu Gebrie
論文名稱: 開發二硒雙親媒性共聚物的多功能藥物遞送系統用於靶向癌症治療
Multi-responsive drug delivery systems based on di-selenium-containing amphiphilic copolymer for targeting cancer therapy
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 高震宇
Chen-Yu Kao
陳奕君
Yi-Chun Chen
陳玉暄
Yu-Shuan Chen
何明樺
Ho Ming-Hua
蔡協致
Hsieh-Chih Tsai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 186
中文關鍵詞: 氧化還原反應二硒化物鍵核心交聯生物素酸鹼敏感型
外文關鍵詞: Redox- responsive, Diselenide bond, Core cross-linked, Biotin, pH-sensitive
相關次數: 點閱:307下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症為一種細胞不受控制且持續增殖的疾病,而癌細胞的病變是因健康細胞中的遺傳物質受到傷害所引發的現象。目前在癌症治療中,手術及化學療法為最常使用的治療方式,但在化學療法中,藥物釋放的調節為目前需要改善的問題之一。為了解決這項問題,人們正在努力設計和製造環境刺激影響的奈米材料,而此舉能將藥物長時間的釋放於目標器官進而達到治療效果。在本論文的第一部分中,研究了由甲氧基聚乙二醇嵌段聚己內酯共對二氧雜環己酮 (Bi(PPCD)-Se2) 構建的熱/氧化還原敏感可注射水凝膠的開發。在1H-NMR、13C-NMR 和 FTIR 分析中,證實了 Bi(PPCD)-Se2 的形成,並且研究了 Bi(PPCD)-Se2 水膠的流變特徵、溶膠-凝膠轉變機制和體外降解特性,也在流變數據中表現水膠具有明顯的黏度 (45 Pa.s)。水膠包覆DOX顯示出 1.3% 的載藥量和 93% 的藥品包覆率 ,DOX@Bi(PPCD)-Se2 水膠在 37°C 和pH 7.4 及10mM GSH 和 5mM H2O2 的環境刺激下,在經過 22 天後釋放了 81.6% 和 85.4%的藥物總量 。在MTT 實驗中,水膠的釋放對於HeLa細胞及HaCaT細胞皆沒有毒性的產生。相比之下,在最大濃度為 10 µg/mL 時,DOX/水膠活性在 HeLa 細胞中產生了 31.3 ± 2.2% 的細胞活化效果。 由於其出色的氧化還原誘導降解性所生成的 Bi(PPCD)-Se2水膠,可用作潛在的藥物遞送生物材料。在本論文的第二個部分中,為了減輕高分子微胞的熱力不穩定性並可提高藥品承載率,我們通過開環聚合和點擊反應,製備了含有 DOX 綴合的 pH 敏感聚合物Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) Bi(mPEG-P[Asp-(Hyd-DOX)])-Se2 CCMs。 在1H-NMR、13C-NMR、拉曼和 FTIR 分析證實了合成材料的形成,並透過 DLS 測量了微胞顆粒大小及zeta 電位鑑定。 根據DLS非交聯微胞 (NCM) 顯示出比 CCM (~72.63 nm) 更大的顆粒尺寸 (~96.43 nm)。在FE-SEM中研究及觀察了高分子微胞的形態並使用 HeLa 細胞以及斑馬魚胚胎測試合成材料的細胞毒性。結果顯示與 DOX/SN-38@NCM不同,DOX/SN-38@CCMs 在體外顯示出受控制的釋放現象。在最大藥物濃度 (10 µg/mL) 的作用下,HeLa 細胞的抑制率比HaCaT(14.25%) 高 50.90%。使用螢光顯微鏡觀察了 SN-38/DOX 負載高分子微胞的細胞攝取和細胞間藥物釋放的現象。 此外利用 3D 腫瘤球體,研究了腫瘤生長侵襲活動。 總結來說,結合上述的這些優勢,合成具pH 敏感的二硒化物的 CCMs 對於 DOX/SN-38 向癌細胞的調節遞送更具有吸引力。我們將含有二硒化物的Biotin -PEG-SeSe-PBLA製備成含生物素介導的高分子微胞,此微胞具氧化還原敏感性且幾乎完全釋放所包覆之 DOX 特性。Biotin-PEG-SeSe-PBLA 會產生均勻分散的高分子微胞,其流體動力學直徑 (Dh) 為 81.54 nm。 高分子微胞中DOX藥物包覆率(EE) 和藥物於載體之攜帶率( DLC)分別為 74.325% 和 5.983wt%。 在與 0.1% H2O2 和 10 mM GSH 培養 8 小時後,未攜帶藥物載體也具氧化還原反應性。 此外DOX@Biotin-PEG-SeSe-PBLA微胞在模擬腫瘤氧化還原環境中表現出最佳的 DOX 釋放,在 0.1% H2O2 和 10 mM GSH 中 72 小時分別為 ~74% 和 ~ 89%。 在最大藥物濃度 (5 µg/mL) 下,HeLa 細胞的抑制率比 HaCaT (11%) 高 76%。二硒化物連接的Biotin-PEG-SeSe-PBLA 產生生理穩定、循環、癌症特異性和智能高分子微胞,需要進行進一步研究。總體來說,氧化還原敏感的含硒高分子微胞對於調節腫瘤細胞中化學藥物的釋放至關重要。


    Cancer is a disease that is defined by unchecked cell proliferation and the absence of cell death, and it is brought on by harm and/or alterations to the genetic material of healthy cells. Surgery, radiation, and chemotherapy are the most often utilized types of cancer therapies. One of the main difficulties with chemotherapy is the controlled release of medicines. To solve this problem, efforts are being made to design and create stimuli-responsive nanomaterials, which will allow for the prolonged controlled release of medications at the site of action. In this dissertation, the first section examined, the development of thermo/redox-sensitive injectable hydrogels constructed from methoxy poly (ethylene glycol)-block poly(-caprolactone-co-p-dioxanone) (Bi(PPCD)-Se2). 1H-NMR, 13C-NMR, and FTIR analysis confirmed the formation of Bi(PPCD)-Se2. The rheological features, sol-gel transition mechanisms, and in vitro degradation characteristics of Bi(PPCD)-Se2 hydrogels were studied. The rheological data show that the hydrogel has a noticeable viscosity. The hydrogel showed 1.3% of Drug loading content and 93% encapsulation efficiency of Doxorubicin. The DOX@Bi(PPCD)-Se2 hydrogel released 81.6% and 85.4% of its payload after 22 days at 37°C and pH 7.4 with 10mM GSH and 5mM H2O2 stimuli. In HeLa and HaCaT cells, the MTT study revealed no toxicity. In contrast, the DOX/hydrogel activity produced 31.3 ± 2.2% of cell viability in HeLa cells at the maximal concentrations of 10 µg/mL. Due to its excellent redox induced degradability, the generated Bi(PPCD)-Se2 hydrogel may be used as a potential drug delivery biomaterial with a focus on local drug distribution in a sustained way. In our second project in order to alleviate thermodynamic instability of Polymeric micelles and enhancing drug control releasing capacity, we were prepared diselenide containing DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly(Aspartate-Hydrazide) Bi(mPEG-P[Asp-(Hyd-DOX)])-Se2 CCMs via ring-opening polymerization and click reaction. 1H-NMR, 13C-NMR, Raman, and FTIR analysis confirmed the formation of the synthesized material while the micelle size and zeta potential were measured by DLS. According to DLS, the non-cross-linked micelle (NCMs) displayed a larger (~96.43 nm) particle size than the CCMs (~72.63 nm). Unlike the DOX/SN-38@NCMs, the DOX/SN-38@CCMs displayed a controlled release outline in vitro. At the maximal drug concentration (10 µg/mL), HeLa cells were inhibited 50.90% more than HaCaT (14.25%). Using fluorescence imaging, the cellular uptake and intercellular drug discharge of SN-38/DOX-loaded PMs were studied. Additionally, utilizing 3D tumor spheroids, the tumor growth inhibition activity was investigated. Overall, the combination of all these attractive features makes the synthesized pH-sensitive diselenide containing CCMs attractive for regulated delivery of DOX/SN-38 to cancer cells. We intensified our efforts to produce biotin-mediated PMs from Biotin-PEG-SeSe-PBLA that contain diselenide and have improved redox triggered and nearly complete DOX-releasing property. The self-assembly biotin-PEG-SeSe-PBLA would result in uniformly dispersed PMs with a hydrodynamic diameter (Dh) of 81.54 nm. Significant DOX EE and DLC, 74.325% and 5.983wt%, respectively, were observed in the PMs. The blank PMs micelles showed improved redox reactivity following an 8 h incubation with 0.1% H2O2 and 10 mM GSH. Additionally, DOX@Biotin-PEG-SeSe-PBLA micelles demonstrated optimal DOX release in mimicked tumor redox environment, at ~74% and ~ 89%, in 0.1% H2O2 and 10 mM GSH 72 h, respectively. At the maximal drug concentration (5 µg/mL), HeLa cells were inhibited 76% more than HaCaT (11%). In conclusion, the diselenide-linked Biotin-PEG-SeSe-PBLA produced physiologically stable, long-circulating, cancer-specific, and intelligent PMs that warrant additional in vivo research. Overall, redox sensitive Selenium-containing PMs are essential for the regulated discharge of chemo drug in tumor cells.

    Table of Contents Declaration i Acknowledgment ii 摘要xx Error! Bookmark not defined. Abstract vi List of Tables xiv List of Figures xv List of Schemes xix List of Abbreviations xx CHAPTER 1 1 1. Background 1 1.1. Anticancer drug delivery 1 1.2. Delivery of anticancer drug via a redox-responsive polymeric nanocarriers 2 1.3. Redox sensitive polymeric nanocarrier recent trends 3 CHAPTER 2 5 2. Literature review 5 2.1. Treatment of cancer 5 2.2. Nanomedicine and cancer treatment 6 2.3. Polymer nanocarriers for drug delivery applications 7 2.4. Stimuli-responsive polymeric nanocarriers for drug delivery 8 2.4.1. pH-Responsive Polymer nanocarriers 9 2.4.2. Thermo-responsive polymeric nanocarriers 10 2.4.3. Multi-Stimuli Responsive Polymeric nanocarrier 12 2.4.4. Redox-sensitive polymeric nanocarrier for delivery of anticancer drug 13 2.4.5. Selenium-containing redox-responsive polymeric nanocarriers 14 2.4.6. Selenium-containing polymeric micelles as drug carrier 15 2.4.6.1. Non-cleavable selenium-containing polymeric micelles 16 2.4.6.2. Mono-cleavable diselenide-containing polymeric micelles 18 2.4.6.3 Multicleavable selenium-containing polymeric micelles 20 2.4.7. Selenium-containing crosslinked polymeric micelles 22 2.5. Research gaps and motivation of study 25 2.6. Objective and outline of study 26 CHAPTER 3 29 3. Development of thermo/redox‑responsive diselenide linked methoxy poly (ethylene glycol) block‑poly(ε‑caprolactone‑co‑p‑dioxanone) hydrogel for localized control drug release 29 3.1. Introduction 29 3.2. Material and methods 33 3.2.1. Materials 33 3.2.2. Methods 33 3.2.2.1. Synthesis of PPCD 33 3.2.2.2. Synthesis of 3,3’-diselanediyldipropanoic acid (DSeDPA) 34 3.2.2.3. Synthesis of Bi(PPCD)‑Se2 35 3.2.2.4. Characterization 36 3.2.2.5. Morphology 36 3.2.2.6. Sol-gel phase transition and rheological behavior 36 3.2.2.7. In vitro H2O2 / GSH‑triggered hydrogel degradation 37 3.2.2.8. The Bi(PPCD)Se2 copolymer in vitro biocompatibility 38 3.2.2.9. Drug loading and in vitro redox-triggered release of drug 39 3.2.2.10. DOX anti-cancer action released from the hydrogel 40 3.3. Results and Discussion 41 3.3.1. Synthesis and Characterization of Bi(PPCD)-Se2 41 3.3.2. Sol-gel phase transition temperature and rheological properties 45 3.3.3. Hydrogels in vitro redox-triggered degradation 47 3.3.4. Morphology of the hydrogel 49 3.3.5. In vitro cytotoxicity test (MTT Assay) 50 3.3.6. Drug loading and in vitro release 50 3.3.7. DOX-loaded hydrogel in vitro anti-cancer activity 51 3.4. CONCLUSIONS 53 CHAPTER 4 54 4. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy 54 4.1. Introduction 54 4.2. Material and methods 58 4.2.1. Materials 58 4.2.2. Methods 59 4.2.2.1. Synthesis of β-Benzyl-L-aspartates N-carboxy anhydride (BLA-NCA) 59 4.2.2.2. Synthesis of methoxy poly (ethylene oxide) b-poly(β-Benzyl-L-aspartate) 61 (mPEG-PBLA) amphiphilic diblock copolymer 61 4.2.2.3. Synthesis of methoxy poly (ethylene oxide)-b-poly (aspartate-hydrazide) 61 (mPEG-P(Asp-Hyd) 61 4.2.2.4. Synthesis of doxorubicin conjugated polymeric prodrug Methoxy poly(ethylene oxide)-b-poly(aspartate-hydrazide) (mPEG-P[Asp-(Hyd-DOX)]) 62 4.2.2.5. Synthesis of diselenide core cross-linked doxorubicin-conjugated methoxy poly(ethylene oxide)-b-poly(aspartate-hydrazide) (Bi(mPEG-P[Asp-(Hyd-DOX])-Se2) 62 4.2.2.6. Characterization 63 4.2.2.7. Formation of critical micelle concentration (CMC) 63 4.2.2.8. SN-38 loaded NCMs and CCMs preparation 64 4.2.2.9. The CCMs stability and pH/redox responsiveness 66 4.2.2.10. In vitro pH/redox triggered DOX/SN-38 releasing behavior of micelles 67 4.2.2.11. in vitro cytotoxicity Study 68 4.2.2.12. cellular uptake Study 68 4.2.2.13. Zebrafish biotoxicity testing of blank mPEG-P(Asp-Hyd) copolymer 69 4.2.2.14. Development of tumor spheroid models and cell culture 70 4.2.2.15. Inhibition of tumor spheroids development 70 4.2.2.16. Study on drug dispersion in tumor spheroids 70 4.3. Results and Discussion 71 4.3.1. Synthesis and characterization of Copolymer 71 4.3.2. Core cross-linked and non-cross-linked polymeric micelle synthesis 75 4.3.3. mPEG-P[Asp-(Hyd-DOX)] copolymer Critical micelle concentration 78 4.3.4. Stability and pH and/or redox responsiveness of CCMs 80 4.3.5. Micelles’ drug-loading and release behavior 81 4.3.6. in vitro anticancer and Cytotoxicity activity 85 4.3.7. Zebrafish in vivo biocompatibility 88 4.3.8. Studying growth inhibition and characterizing spheroid growth 89 4.3.9. Delivery of DOX/SN-38 in 3D spheroids 93 4.3.10. Investigation of cellular absorption and localization 94 4.4. Conclusion 97 CHAPTER 5 98 5. Multifunctional Drug-Loaded Micelle with Biotin-Mediated Cancer Cell Targeting and Redox-Triggered Drug Releasing for Enhanced Anticancer Efficacy 98 5.1. Introduction 98 5.2. Materials and Methods 101 5.2.1. Materials 101 5.2.2. Methods 102 5.2.2.1. β-Benzyl-L-aspartates N-carboxy anhydride Synthesis (BLA-NCA) 102 5.2.2.2. Synthesis of 3’3’-diselanediydipropanole acid (DSeDPA) 102 5.2.2.3. Synthesis of Biotin-PEG 103 5.2.2.4. Synthesis of diselenide functionalized Biotin-PEG-SeSe 104 5.2.2.5. Synthesis of diselenide-linked Biotin-PEG-SeSe-PBLA 104 5.2.2.6. Characterization 105 5.2.2.7. Preparation of blank and DOX-loaded Biotin-PEG-SeSe-PBLA 106 5.2.2.8. Determination of critical micelle concentration (CMC) of Biotin-PEG-SeSe-PBLA 107 5.2.2.9. Redox-responsiveness of Biotin-PEG-SeSe-PBLA 108 5.2.2.10. DOX releasing studies of DOX@Biotin-PEG-SeSe-PBLA 109 5.2.2.11. In vitro cytotoxicity study 109 5.2.2.12. Cellular uptake study 110 5.3. Results and Discussion 111 5.3.1. Characterization of Biotin-PEG-SeSe-PBLA 111 5.3.2. Self-assembly of blank and DOX-loaded Biotin-PEG-SeSe-PBLA micelles 115 5.3.3. Determination of CMC of Biotin-PEG-SeSe-PBLA 117 5.3.4. Redox-responsiveness of Biotin-PEG-SeSe-PBLA 119 5.3.5. Redox responsive DOX releasing trend of DOX@Biotin-PEG-SeSe-PBLA 120 5.3.6. In vitro cytotoxicity and anticancer effect 122 5.3.7. Cellular uptake of Biotin-PEG-SeSe-PBLA micelles 125 6. CONCLUSION 128 CHAPTER 6 130 6. General summary and future perspective 130 6.1. summary 130 6.2. Future perspective and recommendations 132 Reference 134 Appendix: A 150 Appendix: B 162 Appendix: C 163

    [1] J. Atallah, H.H. Khachfe, J. Berro, H.I. Assi, Cancer Treat Res Commun, 24 (2020) 100192.
    [2] R.L. Siegel, K.D. Miller, A. Goding Sauer, S.A. Fedewa, L.F. Butterly, J.C. Anderson, A. Cercek, R.A. Smith, A. Jemal, CA Cancer J Clin, 70 (2020) 145-164.
    [3] P. Krzyszczyk, A. Acevedo, E.J. Davidoff, L.M. Timmins, I. Marrero-Berrios, M. Patel, C. White, C. Lowe, J.J. Sherba, C. Hartmanshenn, K.M. O'Neill, M.L. Balter, Z.R. Fritz, I.P. Androulakis, R.S. Schloss, M.L. Yarmush, Technology (Singap World Sci), 6 (2018) 79-100.
    [4] Y. Hu, S. Wu, Y. He, L. Deng, Chemical Engineering Journal, 362 (2019) 877-886.
    [5] W. Zhou, L. Wang, F. Li, W. Zhang, W. Huang, F. Huo, H. Xu, Advanced Functional Materials, 27 (2017) 1605465.
    [6] W. Zhuang, Y. Xu, G. Li, J. Hu, B. Ma, T. Yu, X. Su, Y. Wang, ACS Appl Mater Interfaces, 10 (2018) 18489-18498.
    [7] Y. Lu, E. Zhang, J. Yang, Z. Cao, Nano Res, 11 (2018) 4985-4998.
    [8] Y.C. Ma, J.X. Wang, W. Tao, C.Y. Sun, Y.C. Wang, D.D. Li, F. Fan, H.S. Qian, X.Z. Yang, ACS Appl Mater Interfaces, 7 (2015) 26315-26325.
    [9] Y. Yang, L. Xu, W. Zhu, L. Feng, J. Liu, Q. Chen, Z. Dong, J. Zhao, Z. Liu, M. Chen, Biomaterials, 156 (2018) 121-133.
    [10] E. Lee, H.-c. Park, D. Lee, S.J. Park, Y.-H. Kim, C.-H. Kim, Journal of Industrial and Engineering Chemistry, 83 (2020) 181-188.
    [11] Y. Wang, Y. Deng, H. Luo, A. Zhu, H. Ke, H. Yang, H. Chen, ACS Nano, 11 (2017) 12134-12144.
    [12] D. Li, J. Jiang, Q. Huang, G. Wang, M. Zhang, J. Du, Polymer Chemistry, 7 (2016) 3444-3450.
    [13] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, CA Cancer J Clin, 68 (2018) 394-424.
    [14] V.G. Deepagan, S. Kwon, D.G. You, V.Q. Nguyen, W. Um, H. Ko, H. Lee, D.G. Jo, Y.M. Kang, J.H. Park, Biomaterials, 103 (2016) 56-66.
    [15] Z. Deng, Y. Qian, Y. Yu, G. Liu, J. Hu, G. Zhang, S. Liu, J Am Chem Soc, 138 (2016) 10452-10466.
    [16] M. Chen, C. Gao, S. Lü, Y. Chen, M. Liu, RSC Advances, 6 (2016) 9164-9174.
    [17] H. Peng, X. Huang, A. Melle, M. Karperien, A. Pich, J Colloid Interface Sci, 540 (2019) 612-622.
    [18] B. Pandey, N.G. Patil, G.S. Bhosle, A.V. Ambade, S.S. Gupta, Bioconjug Chem, 30 (2019) 633-646.
    [19] S.Q. Zhao, G. Hu, X.H. Xu, S.M. Kang, N. Liu, Z.Q. Wu, ACS Macro Lett, 7 (2018) 1073-1079.
    [20] Y. Zhang, K. Wu, H. Sun, J. Zhang, J. Yuan, Z. Zhong, ACS Appl Mater Interfaces, 10 (2018) 1597-1604.
    [21] C. Maiti, S. Parida, S. Kayal, S. Maiti, M. Mandal, D. Dhara, ACS Appl Mater Interfaces, 10 (2018) 5318-5330.
    [22] C. Wei, Y. Zhang, H. Xu, Y. Xu, Y. Xu, M. Lang, J Mater Chem B, 4 (2016) 5059-5067.
    [23] B.Z. Hailemeskel, K.D. Addisu, A. Prasannan, S.L. Mekuria, C.-Y. Kao, H.-C. Tsai, Applied Surface Science, 449 (2018) 15-22.
    [24] S. Zhai, X. Hu, Y. Hu, B. Wu, D. Xing, Biomaterials, 121 (2017) 41-54.
    [25] C. Sun, S. Ji, F. Li, H. Xu, ACS Appl Mater Interfaces, 9 (2017) 12924-12929.
    [26] T. Sun, C. Zhu, J. Xu, Soft Matter, 14 (2018) 921-926.
    [27] Y. Shang, N. Zheng, Z. Wang, Biomacromolecules, 20 (2019) 4602-4610.
    [28] J. Park, Y. Choi, H. Chang, W. Um, J.H. Ryu, I.C. Kwon, Theranostics, 9 (2019) 8073-8090.
    [29] Y. Cao, J. He, J. Liu, M. Zhang, P. Ni, ACS Appl Mater Interfaces, 10 (2018) 7811-7820.
    [30] S.A.P. Siboro, S.A. Salma, H.R. Kim, Y.T. Jeong, Y.S. Gal, K.T. Lim, Materials (Basel), 13 (2020) 2846.
    [31] Q. Li, W. Hou, M. Li, H. Ye, H. Li, Z. Wang, Int J Nanomedicine, 15 (2020) 4825-4845.
    [32] D. Wang, N. Liang, Y. Kawashima, F. Cui, P. Yan, S. Sun, Journal of Materials Science, 54 (2019) 8613-8626.
    [33] S. Maiti, P. Paira, Eur J Med Chem, 145 (2018) 206-223.
    [34] T. Bus, A. Traeger, U.S. Schubert, J Mater Chem B, 6 (2018) 6904-6918.
    [35] F. Richter, L. Martin, K. Leer, E. Moek, F. Hausig, J.C. Brendel, A. Traeger, J Mater Chem B, 8 (2020) 5026-5041.
    [36] D. Hanahan, R.A. Weinberg, Cell, 144 (2011) 646-674.
    [37] W.G. Jiang, A.J. Sanders, M. Katoh, H. Ungefroren, F. Gieseler, M. Prince, S.K. Thompson, M. Zollo, D. Spano, P. Dhawan, D. Sliva, P.R. Subbarayan, M. Sarkar, K. Honoki, H. Fujii, A.G. Georgakilas, A. Amedei, E. Niccolai, A. Amin, S.S. Ashraf, L. Ye, W.G. Helferich, X. Yang, C.S. Boosani, G. Guha, M.R. Ciriolo, K. Aquilano, S. Chen, A.S. Azmi, W.N. Keith, A. Bilsland, D. Bhakta, D. Halicka, S. Nowsheen, F. Pantano, D. Santini, Semin Cancer Biol, 35 Suppl (2015) S244-S275.
    [38] C. Moses, B. Garcia-Bloj, A.R. Harvey, P. Blancafort, Eur J Cancer, 93 (2018) 10-18.
    [39] D.S. Vinay, E.P. Ryan, G. Pawelec, W.H. Talib, J. Stagg, E. Elkord, T. Lichtor, W.K. Decker, R.L. Whelan, H. Kumara, E. Signori, K. Honoki, A.G. Georgakilas, A. Amin, W.G. Helferich, C.S. Boosani, G. Guha, M.R. Ciriolo, S. Chen, S.I. Mohammed, A.S. Azmi, W.N. Keith, A. Bilsland, D. Bhakta, D. Halicka, H. Fujii, K. Aquilano, S.S. Ashraf, S. Nowsheen, X. Yang, B.K. Choi, B.S. Kwon, Semin Cancer Biol, 35 Suppl (2015) S185-S198.
    [40] J. Wang, S. Li, Y. Han, J. Guan, S. Chung, C. Wang, D. Li, Front Pharmacol, 9 (2018) 202.
    [41] B.Z. Hailemeskel, W.H. Hsu, K.D. Addisu, A.T. Andrgie, H.Y. Chou, J.Y. Lai, H.C. Tsai, Mater Sci Eng C Mater Biol Appl, 103 (2019) 109803.
    [42] J. Zhang, X. Fang, Z. Li, H.F. Chan, Z. Lin, Y. Wang, M. Chen, Int J Nanomedicine, 13 (2018) 939-956.
    [43] S. Tran, P.J. DeGiovanni, B. Piel, P. Rai, Clin Transl Med, 6 (2017) 44.
    [44] J. Du, L.A. Lane, S. Nie, J Control Release, 219 (2015) 205-214.
    [45] S. Wang, P. Huang, X. Chen, ACS Nano, 10 (2016) 2991-2994.
    [46] W.G. Kreyling, M. Semmler-Behnke, Q. Chaudhry, Nano Today, 5 (2010) 165-168.
    [47] L.S. Zhang, Y.C. Liu, K. Zhang, Y.W. Chen, X.L. Luo, Colloid Polym Sci, 297 (2019) 225-238.
    [48] J. Pan, S. Lei, L. Chang, D. Wan, Journal of Materials Science, 54 (2018) 1692-1702.
    [49] A.B. Chinen, C.M. Guan, J.R. Ferrer, S.N. Barnaby, T.J. Merkel, C.A. Mirkin, Chem Rev, 115 (2015) 10530-10574.
    [50] Y. Wang, X. Wang, F. Deng, N. Zheng, Y. Liang, H. Zhang, B. He, W. Dai, X. Wang, Q. Zhang, J Control Release, 279 (2018) 136-146.
    [51] G. Ma, J. Liu, J. He, M. Zhang, P. Ni, ACS Biomater Sci Eng, 4 (2018) 2443-2452.
    [52] L. Chen, C. Watson, M. Morsch, N.J. Cole, R.S. Chung, D.N. Saunders, J.J. Yerbury, K.L. Vine, Front Neurosci, 11 (2017) 476.
    [53] T. Repenko, A. Rix, S. Ludwanowski, D. Go, F. Kiessling, W. Lederle, A.J.C. Kuehne, Nat Commun, 8 (2017) 470.
    [54] F. Meng, J. Wang, Q. Ping, Y. Yeo, ACS Nano, 12 (2018) 6458-6468.
    [55] B. Li, Q. Li, J. Mo, H. Dai, Front Pharmacol, 8 (2017) 51.
    [56] N. Muhamad, T. Plengsuriyakarn, K. Na-Bangchang, Int J Nanomedicine, 13 (2018) 3921-3935.
    [57] A.P. Singh, A. Biswas, A. Shukla, P. Maiti, Signal Transduct Target Ther, 4 (2019) 33.
    [58] J. Hu, W. Zhuang, B. Ma, X. Su, T. Yu, G. Li, Y. Hu, Y. Wang, Bioconjug Chem, 29 (2018) 1897-1910.
    [59] K.D. Addisu, B.Z. Hailemeskel, S.L. Mekuria, A.T. Andrgie, Y.C. Lin, H.C. Tsai, ACS Appl Mater Interfaces, 10 (2018) 5147-5160.
    [60] S. Hu, Y. Zhang, Int J Nanomedicine, 5 (2010) 1039-1048.
    [61] H. Wang, Y. Zhao, Y. Wu, Y.L. Hu, K. Nan, G. Nie, H. Chen, Biomaterials, 32 (2011) 8281-8290.
    [62] Z. Song, R. Feng, M. Sun, C. Guo, Y. Gao, L. Li, G. Zhai, J Colloid Interface Sci, 354 (2011) 116-123.
    [63] X.F. Cheng, Y. Jin, R. Qi, W.H. Fan, H.P. Li, X.P. Sun, S.Q. Lai, Polymer, 101 (2016) 370-378.
    [64] B. Chu, L. Zhang, Y. Qu, X. Chen, J. Peng, Y. Huang, Z. Qian, Sci Rep, 6 (2016) 34069.
    [65] X. Yi, J. Dai, Y. Han, M. Xu, X. Zhang, S. Zhen, Z. Zhao, X. Lou, F. Xia, Commun Biol, 1 (2018) 202.
    [66] G. Grancharov, M.-D. Atanasova, D. Aluani, K. Yoncheva, V. Tzankova, B. Trusheva, A. Forys, B. Trzebicka, P.D. Petrov, Polymer Journal, 52 (2019) 435-447.
    [67] Q. Huang, Z. Xu, C. Cai, J. Lin, Macromolecular Chemistry and Physics, 221 (2020).
    [68] W. Xu, I.A. Siddiqui, M. Nihal, S. Pilla, K. Rosenthal, H. Mukhtar, S. Gong, Biomaterials, 34 (2013) 5244-5253.
    [69] X. Pei, F. Luo, J. Zhang, W. Chen, C. Jiang, J. Liu, Sci Rep, 7 (2017) 975.
    [70] C. Porsch, Y. Zhang, M.I. Montanez, J.M. Malho, M.A. Kostiainen, A.M. Nystrom, E. Malmstrom, Biomacromolecules, 16 (2015) 2872-2883.
    [71] G. Kocak, C. Tuncer, V. Bütün, Polymer Chemistry, 8 (2017) 144-176.
    [72] X. Zhang, L. Han, M. Liu, K. Wang, L. Tao, Q. Wan, Y. Wei, Materials Chemistry Frontiers, 1 (2017) 807-822.
    [73] S. Son, E. Shin, B.S. Kim, Biomacromolecules, 15 (2014) 628-634.
    [74] W.H. Chen, G.F. Luo, Q. Lei, H.Z. Jia, S. Hong, Q.R. Wang, R.X. Zhuo, X.Z. Zhang, Chem Commun (Camb), 51 (2015) 465-468.
    [75] H. Wei, S.-X. Cheng, X.-Z. Zhang, R.-X. Zhuo, Progress in Polymer Science, 34 (2009) 893-910.
    [76] Q. Zhou, L. Zhang, T. Yang, H. Wu, Int J Nanomedicine, 13 (2018) 2921-2942.
    [77] Q. Tian, C. Fei, H. Yin, Y. Feng, Progress in Polymer Science, 89 (2019) 108-132.
    [78] Y. Dai, X. Chen, X. Zhang, Polymer Chemistry, 10 (2019) 34-44.
    [79] X. Shen, S. Cao, Q. Zhang, J. Zhang, J. Wang, Z. Ye, ACS Applied Polymer Materials, 1 (2019) 2282-2290.
    [80] B.T. Gebeyehu, A.-W. Lee, S.-Y. Huang, A.A. Muhabie, J.-Y. Lai, D.-J. Lee, C.-C. Cheng, European Polymer Journal, 110 (2019) 403-412.
    [81] W. Lin, Z. Xue, L. Wen, Y. Li, Z. Liang, J. Xu, C. Yang, Y. Gu, J. Zhang, X. Zu, H. Luo, G. Yi, L. Zhang, Colloids Surf B Biointerfaces, 182 (2019) 110313.
    [82] T.A. Debele, S.L. Mekuria, H.C. Tsai, Mater Sci Eng C Mater Biol Appl, 75 (2017) 1326-1338.
    [83] F. Meng, R. Cheng, C. Deng, Z. Zhong, Materials Today, 15 (2012) 436-442.
    [84] T.A. Debele, S.L. Mekuria, H.C. Tsai, Int J Biol Macromol, 98 (2017) 125-138.
    [85] X. Chen, W. Teng, Q. Jin, J. Ji, Colloids Surf B Biointerfaces, 181 (2019) 94-101.
    [86] D. Li, Y. Song, J. He, M. Zhang, P. Ni, ACS Biomater Sci Eng, 5 (2019) 2307-2315.
    [87] Y. Luo, X. Yin, X. Yin, A. Chen, L. Zhao, G. Zhang, W. Liao, X. Huang, J. Li, C.Y. Zhang, Pharmaceutics, 11 (2019).
    [88] R. Mousa, T. Hidmi, S. Pomyalov, S. Lansky, L. Khouri, D.E. Shalev, G. Shoham, N. Metanis, Commun Chem, 4 (2021) 30.
    [89] L. Qiu, L. Ge, M. Long, J. Mao, K.S. Ahmed, X. Shan, H. Zhang, L. Qin, G. Lv, J. Chen, Asian J Pharm Sci, 15 (2020) 83-94.
    [90] D.-x. Ren, P.-c. Chen, P. Zheng, Z.-n. Xu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 577 (2019) 412-420.
    [91] X. Sang, Q. Yang, G. Shi, L. Zhang, D. Wang, C. Ni, Mater Sci Eng C Mater Biol Appl, 91 (2018) 727-733.
    [92] C. Karavasili, D.A. Andreadis, O.L. Katsamenis, E. Panteris, P. Anastasiadou, Z. Kakazanis, V. Zoumpourlis, C.K. Markopoulou, S. Koutsopoulos, I.S. Vizirianakis, D.G. Fatouros, Mol Pharm, 16 (2019) 2326-2341.
    [93] C. Cheng, X. Zhang, Y. Meng, L. Chen, Q. Zhang, J Mater Chem B, 5 (2017) 8487-8497.
    [94] H.F. Darge, A.T. Andrgie, E.Y. Hanurry, Y.S. Birhan, T.W. Mekonnen, H.Y. Chou, W.H. Hsu, J.Y. Lai, S.Y. Lin, H.C. Tsai, Int J Pharm, 572 (2019) 118799.
    [95] C. Gong, M. Shan, B. Li, G. Wu, J Biomed Mater Res A, 105 (2017) 2451-2460.
    [96] X. Xu, Z. Huang, Z. Huang, X. Zhang, S. He, X. Sun, Y. Shen, M. Yan, C. Zhao, ACS Appl Mater Interfaces, 9 (2017) 20361-20375.
    [97] W. Yanhua, H. Hao, Y. Li, S. Zhang, Colloids Surf B Biointerfaces, 140 (2016) 297-306.
    [98] X. Tan, L. Yang, Z. Huang, Y. Yu, Z. Wang, X. Zhang, Polymer Chemistry, 6 (2015) 681-685.
    [99] X.T. Cao, C.M.Q. Le, H.H.P. Thi, G.D. Kim, Y.S. Gal, K.T. Lim, Express Polymer Letters, 11 (2017) 832-845.
    [100] D. Xiong, L. Wen, S. Peng, J. Xu, L. Zhang, Pharmaceutics, 12 (2020) 258.
    [101] S. Chibh, A. Kour, N. Yadav, P. Kumar, P. Yadav, V.S. Chauhan, J.J. Panda, ACS Omega, 5 (2020) 3365-3375.
    [102] J.F. Quinn, M.R. Whittaker, T.P. Davis, Polymer Chemistry, 8 (2017) 97-126.
    [103] S. Chang, Y. Wang, T. Zhang, X. Pu, L. Zong, H. Zhu, L. Zhao, B. Feng, Front Oncol, 9 (2019) 823.
    [104] J. Liu, Y. Pang, J. Chen, P. Huang, W. Huang, X. Zhu, D. Yan, Biomaterials, 33 (2012) 7765-7774.
    [105] R. Li, F. Peng, J. Cai, D. Yang, P. Zhang, Asian J Pharm Sci, 15 (2020) 311-325.
    [106] N. Lafuente-Gomez, A. Latorre, P. Milan-Rois, C. Rodriguez Diaz, A. Somoza, Chem Commun (Camb), 57 (2021) 13662-13677.
    [107] C. Sun, L. Wang, B. Xianyu, T. Li, S. Gao, H. Xu, Biomaterials, 225 (2019) 119514.
    [108] M. Haratake, Y. Tachibana, Y. Emaya, S. Yoshida, T. Fuchigami, M. Nakayama, ACS Omega, 1 (2016) 58-65.
    [109] S. Fu, F. Li, M. Zang, Z. Zhang, Y. Ji, X. Yu, Q. Luo, S. Guan, J. Xu, J. Liu, J Mater Chem B, 7 (2019) 4927-4932.
    [110] A. Sentkowska, K. Pyrzynska, Mol Biol Rep, 46 (2019) 3019-3024.
    [111] F. Liu, H. Liu, R. Liu, C. Xiao, X. Duan, D.J. McClements, X. Liu, Journal of Agricultural and Food Chemistry, 67 (2019) 2991-2998.
    [112] W. Cao, H.P. Xu, Materials Chemistry Frontiers, 3 (2019) 2010-2017.
    [113] W. Fan, Y. Jin, L. Shi, Polymer Chemistry, 11 (2020) 5463-5474.
    [114] W. Cao, Y. Gu, M. Meineck, H. Xu, Chem Asian J, 9 (2014) 48-57.
    [115] C. Fan, C. Ding, X. Pan, Z. Zhang, J. Zhu, X. Zhu, Macromol Rapid Commun, 36 (2015) 903-908.
    [116] N. Ma, H. Xu, L. An, J. Li, Z. Sun, X. Zhang, Langmuir, 27 (2011) 5874-5878.
    [117] X. Pan, F. Driessen, X. Zhu, F.E. Du Prez, ACS Macro Lett, 6 (2017) 89-92.
    [118] Z. Cai, W. Lu, F. Gao, X. Pan, J. Zhu, Z. Zhang, X. Zhu, Macromol Rapid Commun, 37 (2016) 865-871.
    [119] C. Wang, X. An, M. Pang, Z. Zhang, X. Zhu, J. Zhu, F.E. Du Prez, X. Pan, Polymer Chemistry, 9 (2018) 4044-4051.
    [120] D. Yue, G. Cheng, Y. He, Y. Nie, Q. Jiang, X. Cai, Z. Gu, J Mater Chem B, 2 (2014) 7210-7221.
    [121] T. Sun, Y. Jin, R. Qi, S. Peng, B. Fan, Polymer Chemistry, 4 (2013).
    [122] C. Li, W. Huang, L. Zhou, P. Huang, Y. Pang, X. Zhu, D. Yan, Polymer Chemistry, 6 (2015) 6498-6508.
    [123] J. Yang, S. Pan, S. Gao, Y. Dai, H. Xu, Biomaterials, 249 (2020) 120054.
    [124] Y.S. Birhan, B.Z. Hailemeskel, T.W. Mekonnen, E.Y. Hanurry, H.F. Darge, A.T. Andrgie, H.Y. Chou, J.Y. Lai, G.H. Hsiue, H.C. Tsai, Int J Pharm, 567 (2019) 118486.
    [125] K. Zhang, X. Tang, J. Zhang, W. Lu, X. Lin, Y. Zhang, B. Tian, H. Yang, H. He, J Control Release, 183 (2014) 77-86.
    [126] D. Xiong, R. Zhang, W.J. Luo, H.W. Gu, S.Y. Peng, L.J. Zhang, React Funct Polym, 119 (2017) 64-74.
    [127] Y.C. Xia, H. He, X.Y. Liu, D. Hu, L.C. Yin, Y.B. Lu, W.J. Xu, Polymer Chemistry, 7 (2016) 6330-6339.
    [128] Y.L. Ning Ma, Huaping Xu, Zhiqiang Wang, and Xi Zhang, JACS comunication, (2009).
    [129] N. Ma, Y. Li, H. Ren, H. Xu, Z. Li, X. Zhang, Polymer Chemistry, 1 (2010).
    [130] J. Luan, W. Shen, C. Chen, K. Lei, L. Yu, J. Ding, RSC Advances, 5 (2015) 97975-97981.
    [131] P. Han, S. Li, W. Cao, Y. Li, Z. Sun, Z. Wang, H. Xu, J Mater Chem B, 1 (2013) 740-743.
    [132] Y. Tian, J. Zheng, X. Tang, Q. Ren, Y. Wang, W. Yang, Particle & Particle Systems Characterization, 32 (2015) 547-551.
    [133] X.L. Yang, X. Xing, J. Li, Y.H. Liu, N. Wang, X.Q. Yu, RSC Adv, 9 (2019) 6003-6010.
    [134] H. Ren, Y. Wu, N. Ma, H. Xu, X. Zhang, Soft Matter, 8 (2012) 1460-1466.
    [135] L. Yu, Y. Yang, F.S. Du, Z.C. Li, Biomacromolecules, 19 (2018) 2182-2193.
    [136] L. Yu, H.L. Ke, F.S. Du, Z.C. Li, Biomacromolecules, 20 (2019) 2809-2820.
    [137] Y. Zhang, Y. Xu, C. Wei, C. Sun, B. Yan, J. Hu, W. Lu, Polymer Chemistry, 10 (2019) 2143-2151.
    [138] L. Shi, Y. Jin, W. Du, S. Lai, Y. Shen, R. Zhou, Polymer, 198 (2020).
    [139] L. Wang, W. Cao, Y. Yi, H. Xu, Langmuir, 30 (2014) 5628-5636.
    [140] L. Zhang, S. Zhang, J. Xu, Y. Li, J. He, Y. Yang, T. Huynh, P. Ni, G. Duan, Z. Yang, R. Zhou, ACS Appl Mater Interfaces, 12 (2020) 43398-43407.
    [141] S. Gao, T. Li, Y. Guo, C. Sun, B. Xianyu, H. Xu, Adv Mater, 32 (2020) e1907568.
    [142] J. Wang, C. Sun, J. Hu, Y. Huang, Y. Lu, Y. Zhang, Polymer Chemistry, 11 (2020) 1597-1605.
    [143] C. Sun, J. Wang, J. Hu, W. Lu, Z. Song, Y. Zhang, Materials Chemistry Frontiers, 4 (2020) 2443-2451.
    [144] L. Wang, K. Zhu, W. Cao, C. Sun, C. Lu, H. Xu, Polymer Chemistry, 10 (2019) 2039-2046.
    [145] L. Yu, M. Zhang, F.-S. Du, Z.-C. Li, Polymer Chemistry, 9 (2018) 3762-3773.
    [146] J. Hu, J. He, D. Cao, M. Zhang, P. Ni, Polymer Chemistry, 6 (2015) 3205-3216.
    [147] J. He, Y. Xia, Y. Niu, D. Hu, X. Xia, Y. Lu, W. Xu, Journal of Applied Polymer Science, 134 (2017).
    [148] D. Biswas, S.Y. An, Y. Li, X. Wang, J.K. Oh, Mol Pharm, 14 (2017) 2518-2528.
    [149] Y. Zhou, J. Yu, X. Feng, W. Li, Y. Wang, H. Jin, H. Huang, Y. Liu, D. Fan, RSC Adv., 6 (2016) 31391-31400.
    [150] N. Chan, S.Y. An, J.K. Oh, Polym. Chem., 5 (2014) 1637-1649.
    [151] M. Najafi, N. Kordalivand, M.A. Moradi, J. van den Dikkenberg, R. Fokkink, H. Friedrich, N. Sommerdijk, M. Hembury, T. Vermonden, Biomacromolecules, 19 (2018) 3766-3775.
    [152] J. Xia, P. Zhao, S. Pan, H. Xu, ACS Macro Lett, 8 (2019) 629-633.
    [153] S.A. Salma, M.P. Patil, D.W. Kim, C.M.Q. Le, B.-H. Ahn, G.-D. Kim, K.T. Lim, Polymer Chemistry, 9 (2018) 4813-4823.
    [154] Y. Kim, M.H. Pourgholami, D.L. Morris, M.H. Stenzel, Journal of Materials Chemistry, 21 (2011).
    [155] C. Shi, X. Guo, Q. Qu, Z. Tang, Y. Wang, S. Zhou, Biomaterials, 35 (2014) 8711-8722.
    [156] F. Behroozi, M.J. Abdkhodaie, H.S. Abandansari, L. Satarian, M. Molazem, K.T. Al-Jamal, H. Baharvand, Acta Biomater, 76 (2018) 239-256.
    [157] K. Wang, Q. Fu, W. Li, Y. Gao, J. Zhang, Polymer Chemistry, 3 (2012).
    [158] M. Li, Q. Li, W. Hou, J. Zhang, H. Ye, H. Li, D. Zeng, J. Bai, RSC Adv, 10 (2020) 15252-15263.
    [159] Q. Liu, H. Zhu, J. Qin, H. Dong, J. Du, Biomacromolecules, 15 (2014) 1586-1592.
    [160] S.K. Golombek, J.N. May, B. Theek, L. Appold, N. Drude, F. Kiessling, T. Lammers, Adv Drug Deliv Rev, 130 (2018) 17-38.
    [161] R. Kotchetkov, D. Susman, D. Bhutani, K. Broch, A. Dispenzieri, F.K. Buadi, Int J Cancer, 148 (2021) 2807-2814.
    [162] M. Norouzi, B. Nazari, D.W. Miller, Drug Discov Today, 21 (2016) 1835-1849.
    [163] R. Mo, Z. Gu, Materials Today, 19 (2016) 274-283.
    [164] S.Y. Lee, M. Yang, J.H. Seo, D.I. Jeong, C. Hwang, H.J. Kim, J. Lee, K. Lee, J. Park, H.J. Cho, ACS Appl Mater Interfaces, 13 (2021) 2189-2203.
    [165] C. Wang, C. Liu, Q. Wei, L. Yang, P. Yang, Y. Li, Y. Cheng, Research (Wash D C), 2020 (2020) 6563091.
    [166] M. Chen, C. Grazon, P. Sensharma, T.T. Nguyen, Y. Feng, M. Chern, R.C. Baer, N. Varongchayakul, K. Cook, S. Lecommandoux, C.M. Klapperich, J.E. Galagan, A.M. Dennis, M.W. Grinstaff, ACS Appl Mater Interfaces, 12 (2020) 43513-43521.
    [167] Z. Sun, C. Song, C. Wang, Y. Hu, J. Wu, Mol Pharm, 17 (2020) 373-391.
    [168] Z. Li, F. Zhou, Z. Li, S. Lin, L. Chen, L. Liu, Y. Chen, ACS Appl Mater Interfaces, 10 (2018) 25194-25202.
    [169] J.J. Fu, J.Y. Zhang, S.P. Li, L.M. Zhang, Z.X. Lin, L. Liang, A.P. Qin, X.Y. Yu, Mol Pharm, 15 (2018) 4621-4631.
    [170] K. Gwon, I. Han, S. Lee, Y. Kim, D.N. Lee, ACS Appl Mater Interfaces, 12 (2020) 20234-20242.
    [171] S.S. Liow, Q. Dou, D. Kai, A.A. Karim, K. Zhang, F. Xu, X.J. Loh, ACS Biomaterials Science & Engineering, 2 (2016) 295-316.
    [172] W. Zhang, C.H. Tung, Chem Commun (Camb), 54 (2018) 8367-8370.
    [173] C. Yang, Z. Xue, Y. Liu, J. Xiao, J. Chen, L. Zhang, J. Guo, W. Lin, Mater Sci Eng C Mater Biol Appl, 84 (2018) 254-262.
    [174] J. Xia, T. Li, C. Lu, H. Xu, Macromolecules, 51 (2018) 7435-7455.
    [175] Y.S. Birhan, H.F. Darge, E.Y. Hanurry, A.T. Andrgie, T.W. Mekonnen, H.Y. Chou, J.Y. Lai, H.C. Tsai, Pharmaceutics, 12 (2020) 580.
    [176] M. Huo, J. Yuan, L. Tao, Y. Wei, Polym. Chem., 5 (2014) 1519-1528.
    [177] Y. Kang, L. Lu, J. Lan, Y. Ding, J. Yang, Y. Zhang, Y. Zhao, T. Zhang, R.J.Y. Ho, Acta Biomater, 68 (2018) 137-153.
    [178] M.M. Song, Y.M. Wang, B. Wang, X.Y. Liang, Z.Y. Chang, B.J. Li, S. Zhang, ACS Appl Mater Interfaces, 10 (2018) 15021-15029.
    [179] T. Wang, Y. Liu, J. Hao, Colloid Polym Sci, 292 (2014) 2497-2508.
    [180] X. Zeng, X. Zhou, M. Li, C. Wang, J. Xu, D. Ma, W. Xue, J Mater Sci Mater Med, 26 (2015) 234.
    [181] G. Zhao, X. Wu, P. Chen, L. Zhang, C.S. Yang, J. Zhang, Free Radic Biol Med, 126 (2018) 55-66.
    [182] Y. Zhang, Y. Xu, C. Wei, Y. Zhang, L. Yang, Z. Song, M. Lang, Materials Today Chemistry, 4 (2017) 172-179.
    [183] X. Cheng, Y. Jin, T. Sun, R. Qi, B. Fan, H. Li, RSC Advances, 5 (2015) 4162-4170.
    [184] W. Cao, X. Zhang, X. Miao, Z. Yang, H. Xu, Angew Chem Int Ed Engl, 52 (2013) 6233-6237.
    [185] N. Yang, W. Xiao, X. Song, W. Wang, X. Dong, Nano-Micro Letters, 12 (2020).
    [186] G. Lin, L. Cosimbescu, N.J. Karin, A. Gutowska, B.J. Tarasevich, J Mater Chem B, 1 (2013) 1249-1255.
    [187] A. Rangel, T.N. Nguyen, C. Egles, V. Migonney, Journal of Applied Polymer Science, 138 (2021).
    [188] C.-e. Wang, P.-h. Zhang, Textile Research Journal, 87 (2016) 1968-1976.
    [189] S. Ji, J. Xia, H. Xu, ACS Macro Letters, 5 (2015) 78-82.
    [190] G. Cheng, Y. He, L. Xie, Y. Nie, B. He, Z. Zhang, Z. Gu, Int J Nanomedicine, 7 (2012) 3991-4006.
    [191] H. Fentahun Darge, E. Yibru Hanurry, Y. Simegniew Birhan, T. Worku Mekonnen, A. Tizazu Andrgie, H.-Y. Chou, J.-Y. Lai, H.-C. Tsai, Chemical Engineering Journal, 406 (2021) 126879.
    [192] D.S.B. Anugrah, K. Ramesh, M. Kim, K. Hyun, K.T. Lim, Carbohydr Polym, 223 (2019) 115070.
    [193] S.L. Mekuria, T.A. Debele, H.-Y. Chou, H.-C. Tsai, The Journal of Physical Chemistry B, 120 (2016) 123-130.
    [194] Q. Lv, C. He, F. Quan, S. Yu, X. Chen, Bioact Mater, 3 (2018) 118-128.
    [195] M. Liu, X. Song, Y. Wen, J.L. Zhu, J. Li, ACS Appl Mater Interfaces, 9 (2017) 35673-35682.
    [196] M.Q. Wang, H. Zou, W.B. Liu, N. Liu, Z.Q. Wu, ACS Macro Lett, 11 (2022) 179-185.
    [197] J. Bai, J. Wang, Y.C. Feng, Y.F. Yao, X.B. Zhao, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 639 (2022) 128353.
    [198] L. Zhang, H.P. Bei, Y. Piao, Y. Wang, M. Yang, X. Zhao, Chemphyschem, 19 (2018) 1956-1964.
    [199] J. Liao, H. Peng, C. Liu, D. Li, Y. Yin, B. Lu, H. Zheng, Q. Wang, Mater Sci Eng C Mater Biol Appl, 118 (2021) 111527.
    [200] Y. Huang, J. Yan, S. Peng, Z. Tang, C. Tan, J. Ling, W. Lin, X. Lin, X. Zu, G. Yi, Polymers (Basel), 12 (2020) 82.
    [201] K. Chen, H. Cai, H. Zhang, H. Zhu, Z. Gu, Q. Gong, K. Luo, Acta Biomater, 84 (2019) 339-355.
    [202] J. Cao, T. Su, L. Zhang, R. Liu, G. Wang, B. He, Z. Gu, Int J Pharm, 471 (2014) 28-36.
    [203] H. Wang, J. He, D. Cao, M. Zhang, F. Li, K.C. Tam, P. Ni, Polymer Chemistry, 6 (2015) 4809-4818.
    [204] S. Dong, Y. Sun, J. Liu, L. Li, J. He, M. Zhang, P. Ni, ACS Appl Mater Interfaces, 11 (2019) 8740-8748.
    [205] M.J. Tschan, N.S. Ieong, R. Todd, J. Everson, A.P. Dove, Angew Chem Int Ed Engl, 56 (2017) 16664-16668.
    [206] C. Dong, Q. Zhou, J. Xiang, F. Liu, Z. Zhou, Y. Shen, J Control Release, 321 (2020) 529-539.
    [207] S. Tang, Z. Davoudi, G. Wang, Z. Xu, T. Rehman, A. Prominski, B. Tian, K.M. Bratlie, H. Peng, Q. Wang, Chem Soc Rev, 50 (2021) 12679-12701.
    [208] R. Hu, H. Zheng, J. Cao, Z. Davoudi, Q. Wang, J Biomed Nanotechnol, 13 (2017) 1097-1105.
    [209] J. Sun, Z. Wang, A. Cao, R. Sheng, RSC Adv, 9 (2019) 34535-34546.
    [210] D.S. Spencer, A.B. Shodeinde, D.W. Beckman, B.C. Luu, H.R. Hodges, N.A. Peppas, Int J Pharm, 588 (2020) 119691.
    [211] P. Qi, Y. Bu, J. Xu, B. Qin, S. Luan, S. Song, Colloid Polym Sci, 295 (2016) 1-12.
    [212] A. Van Driessche, A. Kocere, H. Everaert, L. Nuhn, S. Van Herck, G. Griffiths, F. Fenaroli, B.G. De Geest, Chemistry of Materials, 30 (2018) 8587-8596.
    [213] S. Zhuo, F. Zhang, J. Yu, X. Zhang, G. Yang, X. Liu, Molecules, 25 (2020) 5649.
    [214] J.H. Du, B. Choi, Y.X. Liu, A.C. Feng, S.H. Thang, Polymer Chemistry, 10 (2019) 1291-1298.
    [215] S. Meşeli, G. Kaplan, D. Cansız, Ü. Üstündağ, İ. Ünal, E. Emekli Alturfan, F. Yanıkoğlu, D. Tağtekin, Experimed, 11 (2021) 67-72.
    [216] F. Jia, Y. Wang, H.B. Wang, Q. Jin, T.J. Cai, Y.J. Chen, J. Ji, Polymer Chemistry, 6 (2015) 2069-2075.
    [217] X.T. Cao, V. Nguyen, T.D. Nguyen, V. Doan, T.K.T. Tu, K.T. Lim, Mol Cryst Liq Cryst, 707 (2020) 29-37.
    [218] Z. Wang, L.B. Ling, Q. Xia, X.S. Li, Journal of Drug Delivery Science and Technology, 53 (2019) 101168.
    [219] J. Zhao, C. Yan, Z. Chen, J. Liu, H. Song, W. Wang, J. Liu, N. Yang, Y. Zhao, L. Chen, J Colloid Interface Sci, 540 (2019) 66-77.
    [220] X. Wei, J. Liao, Z. Davoudi, H. Zheng, J. Chen, D. Li, X. Xiong, Y. Yin, X. Yu, J. Xiong, Q. Wang, Mar Drugs, 16 (2018).
    [221] J. Liao, H. Peng, X. Wei, Y. Song, C. Liu, D. Li, Y. Yin, X. Xiong, H. Zheng, Q. Wang, Mater Sci Eng C Mater Biol Appl, 108 (2020) 110461.
    [222] T. Tong, Y. Qi, L.D. Bussiere, M. Wannemuehler, C.L. Miller, Q. Wang, C. Yu, Nanoscale, 12 (2020) 16339-16347.
    [223] D. Chen, X. Dong, M. Qi, X. Song, J. Sun, Carbohydr Polym, 157 (2017) 1272-1280.
    [224] Y. Jiang, Y. Zhou, C.Y. Zhang, T. Fang, Int J Nanomedicine, 15 (2020) 3319-3331.
    [225] Z. Wu, S. Li, Y. Cai, F. Chen, Y. Chen, X. Luo, Colloids Surf B Biointerfaces, 189 (2020) 110741.
    [226] T.C. Lai, H. Cho, G.S. Kwon, Polym. Chem., 5 (2014) 1650-1661.
    [227] W.S. Shin, J. Han, R. Kumar, G.G. Lee, J.L. Sessler, J.H. Kim, J.S. Kim, Sci Rep, 6 (2016) 29018.
    [228] S. Ordanini, F. Cellesi, Pharmaceutics, 10 (2018) 209.
    [229] V. Athanasiou, P. Thimi, M. Liakopoulou, F. Arfara, D. Stavroulaki, I. Kyroglou, D. Skourtis, I. Stavropoulou, P. Christakopoulos, M. Kasimatis, P.G. Fragouli, H. Iatrou, Polymers (Basel), 12 (2020) 2819.
    [230] C.D. Vacogne, H. Schlaad, Chem Commun (Camb), 51 (2015) 15645-15648.
    [231] S. Gatti, A. Agostini, U.C. Palmiero, C. Colombo, M. Peviani, A. Biffi, D. Moscatelli, Nanotechnology, 29 (2018) 305602.
    [232] M. Prabaharan, J.J. Grailer, S. Pilla, D.A. Steeber, S. Gong, Biomaterials, 30 (2009) 5757-5766.
    [233] N. Kalva, S. Uthaman, S.J. Lee, Y.J. Lim, R. Augustine, K.M. Huh, I.K. Park, I. Kim, Reactive & Functional Polymers, 166 (2021) 104966.
    [234] H.T. Gebrie, K.D. Addisu, H.F. Darge, T.W. Mekonnen, D.T. kottackal, H.-C. Tsai, Journal of Polymer Research, 28 (2021) 448.
    [235] W. Chen, P. Zhong, F. Meng, R. Cheng, C. Deng, J. Feijen, Z. Zhong, J Control Release, 169 (2013) 171-179.
    [236] D. Cao, J. He, J. Xu, M. Zhang, L. Zhao, G. Duan, Y. Cao, R. Zhou, P. Ni, Polymer Chemistry, 7 (2016) 4198-4212.
    [237] J. Prakash, M. Venkatesan, J.J.S. Prakash, G. Bharath, S. Anwer, P. Veluswamy, D. Prema, K.S. Venkataprasanna, G.D. Venkatasubbu, Applied Surface Science, 481 (2019) 1360-1369.
    [238] K.D. Addisu, W.H. Hsu, B.Z. Hailemeskel, A.T. Andrgie, H.Y. Chou, C.H. Yuh, J.Y. Lai, H.C. Tsai, ACS Biomater Sci Eng, 5 (2019) 5453-5469.
    [239] Wei-Hsin Hsu, 2 Pilar Sánchez-Gómez,3 Esther Gomez-Ibarlucea,1 Delyan P. Ivanov,4 Ruman Rahman,4 Anna M. Grabowska,4 Noemi Csaba,1 Cameron Alexander2* and Marcos GarciaFuentes, 2 (2019) 1800126.
    [240] S. Gradisar, E. Zagar, D. Pahovnik, ACS Macro Lett, 6 (2017) 637-640.
    [241] Z. Zhang, M. Yu, T. An, J. Yang, M. Zou, Y. Zhai, W. Sun, G. Cheng, Pharm Res, 37 (2019) 4.
    [242] L. Li, D. Li, M. Zhang, J. He, J. Liu, P. Ni, Bioconjug Chem, 29 (2018) 2806-2817.
    [243] Q. Zhang, J. He, M. Zhang, P. Ni, J Mater Chem B, 3 (2015) 4922-4932.
    [244] Y. Sun, X. Du, J. He, J. Hu, M. Zhang, P. Ni, J Mater Chem B, 5 (2017) 3771-3782.
    [245] M. Ramirez-Castrillon, V.P. Jaramillo-Garcia, H. Lopes Barros, J.A. Pegas Henriques, V. Stefani, P. Valente, Front Microbiol, 12 (2021) 619313.
    [246] A. Fluksman, O. Benny, Anal Methods-Uk, 11 (2019) 3810-3818.
    [247] K.N. Sill, B. Sullivan, A. Carie, J.E. Semple, Biomacromolecules, 18 (2017) 1874-1884.
    [248] X.X. Zhou, L. Jin, R.Q. Qi, T. Ma, R Soc Open Sci, 5 (2018) 171654.
    [249] X. Zhang, T. Zhu, Y. Miao, L. Zhou, W. Zhang, J Nanobiotechnology, 18 (2020) 136.
    [250] Z. Zhang, L. Yin, C. Tu, Z. Song, Y. Zhang, Y. Xu, R. Tong, Q. Zhou, J. Ren, J. Cheng, ACS Macro Lett, 2 (2013) 40-44.
    [251] L. Shi, J. Zhang, M. Zhao, S. Tang, X. Cheng, W. Zhang, W. Li, X. Liu, H. Peng, Q. Wang, Nanoscale, 13 (2021) 10748-10764.
    [252] H. Danafar, K. Rostamizadeh, S. Davaran, M. Hamidi, Drug Dev Ind Pharm, 43 (2017) 1908-1918.
    [253] M. Waliczek, O. Pehlivan, P. Stefanowicz, ChemistryOpen, 8 (2019) 1199-1203.
    [254] P. Zhao, J. Xia, M. Cao, H. Xu, ACS Macro Lett, 9 (2020) 163-168.
    [255] D. Xiong, N. Yao, H.W. Gu, J.F. Wang, L.J. Zhang, Polymer, 114 (2017) 161-172.
    [256] Y.F. Kang, Y.H. Li, Y.W. Fang, Y. Xu, X.M. Wei, X.B. Yin, Sci Rep, 5 (2015) 11835.
    [257] S.J. Han, S. Kwon, K.S. Kim, Cancer Cell Int, 21 (2021) 152.
    [258] L. Lamch, R. Gancarz, M. Tsirigotis-Maniecka, I.M. Moszynska, J. Ciejka, K.A. Wilk, Langmuir, 37 (2021) 4316-4330.
    [259] C. Wang, P. Qi, Y. Lu, L. Liu, Y. Zhang, Q. Sheng, T. Wang, M. Zhang, R. Wang, S. Song, Drug Deliv, 27 (2020) 344-357.
    [260] C. Yang, A.B. Attia, J.P. Tan, X. Ke, S. Gao, J.L. Hedrick, Y.Y. Yang, Biomaterials, 33 (2012) 2971-2979.
    [261] S. Senapati, A.K. Mahanta, S. Kumar, P. Maiti, Signal Transduct Target Ther, 3 (2018) 7.
    [262] Y. Lu, Z. Yue, J. Xie, W. Wang, H. Zhu, E. Zhang, Z. Cao, Nat Biomed Eng, 2 (2018) 318-325.
    [263] Z. Tang, L. Zhang, Y. Wang, D. Li, Z. Zhong, S. Zhou, Acta Biomater, 42 (2016) 232-246.
    [264] X. Gao, B. Wang, X. Wei, W. Rao, F. Ai, F. Zhao, K. Men, B. Yang, X. Liu, M. Huang, M. Gou, Z. Qian, N. Huang, Y. Wei, Int J Nanomedicine, 8 (2013) 971-982.
    [265] L. Li, B. Lu, J. Wu, Q. Fan, X. Guo, Z. Liu, New Journal of Chemistry, 40 (2016) 4761-4768.
    [266] S.N. Wenjing Lin, Di Xiong, Xindong Guo, Jufang Wang and Lijuan Zhang*, Nanoscale Research Letters, 9 (2014) 243.
    [267] Y. Zhang, M. Chen, X. Luo, H. Zhang, C. Liu, H. Li, X. Li, Polymer Chemistry, 6 (2015) 2192-2203.
    [268] W.M. Jinqiang Wang, Lye Lin Lock, Jianbin Tang, Meihua Sui, Weilin Sun, Honggang Cui, Dong Xu, and Youqing Shen, Acs nano, 9 (2015) 7195–7206.
    [269] S. Deshayes, H. Cabral, T. Ishii, Y. Miura, S. Kobayashi, T. Yamashita, A. Matsumoto, Y. Miyahara, N. Nishiyama, K. Kataoka, J Am Chem Soc, 135 (2013) 15501-15507.
    [270] L. Li, Y. Zhang, J. Wang, R Soc Open Sci, 4 (2017) 170063.
    [271] K.T. Fam, M. Collot, A.S. Klymchenko, Chem Sci, 11 (2020) 8240-8248.
    [272] W.X. Ren, J. Han, S. Uhm, Y.J. Jang, C. Kang, J.H. Kim, J.S. Kim, Chem Commun (Camb), 51 (2015) 10403-10418.
    [273] E.Y. Hanurry, T.W. Mekonnen, A.T. Andrgie, H.F. Darge, Y.S. Birhan, W.H. Hsu, H.Y. Chou, C.C. Cheng, J.Y. Lai, H.C. Tsai, Pharmaceutics, 12 (2020).
    [274] X.Z. Shuyi Chen, Jingyi Chen, Jin Chen, Larisa Kuznetsova, Stanislaus S. Wong, and Iwao Ojima*, Bioconjugate Chem, 21 (2010) 979–987.
    [275] G. Liu, L. Zhou, Y. Guan, Y. Su, C.M. Dong, Macromol Rapid Commun, 35 (2014) 1673-1678.
    [276] A. Moreno, A. Jimenez-Alesanco, J.C. Ronda, V. Cadiz, M. Galia, V. Percec, O. Abian, G. Lligadas, Biomacromolecules, 21 (2020) 4313-4325.
    [277] J. Li, Z.E. Hu, X.L. Yang, M.Q. Zhang, Y.H. Liu, N. Wang, X.Q. Yu, ACS Appl Bio Mater, 3 (2020) 7382-7387.
    [278] Y. Wang, L. Zhu, Y. Wang, L. Li, Y. Lu, L. Shen, L.W. Zhang, ACS Appl Mater Interfaces, 8 (2016) 35106-35113.
    [279] Y.S. Birhan, H.C. Tsai, J Mater Chem B, 9 (2021) 6770-6801.
    [280] D. Li, F. Wang, H. Di, X. Liu, P. Zhang, W. Zhou, D. Liu, Langmuir, 35 (2019) 8799-8805.
    [281] W. Zhang, W. Lin, X. Zheng, S. He, Z. Xie, Chemistry of Materials, 29 (2017) 1856-1863.
    [282] M. Chen, C. Gao, S. Lü, Y. Chen, M. Liu, RSC Advances, 6 (2016) 46159-46169.
    [283] H.T. Gebrie, K.D. Addisu, H.F. Darge, Y.S. Birhan, D. Thankachan, H.-C. Tsai, S.-Y. Wu, Biomaterials Advances, 139 (2022).
    [284] J. Duan, C. Liu, X. Liang, X. Li, Y. Chen, Z. Chen, X. Wang, D. Kong, Y. Li, J. Yang, Int J Nanomedicine, 13 (2018) 2743-2754.
    [285] B. Sun, C. Luo, X. Zhang, M. Guo, M. Sun, H. Yu, Q. Chen, W. Yang, M. Wang, S. Zuo, P. Chen, Q. Kan, H. Zhang, Y. Wang, Z. He, J. Sun, Nat Commun, 10 (2019) 3211.
    [286] Y.S. Birhan, E.Y. Hanurry, T.W. Mekonnen, H.F. Darge, Y.H. Lin, M.C. Yang, H.C. Tsai, Journal of Applied Polymer Science, 139 (2022) 52327.
    [287] H. Cabral, K. Miyata, K. Osada, K. Kataoka, Chem Rev, 118 (2018) 6844-6892.
    [288] C. He, Y. Hu, L. Yin, C. Tang, C. Yin, Biomaterials, 31 (2010) 3657-3666.
    [289] V. Lotocki, A. Kakkar, Pharmaceutics, 12 (2020).
    [290] J.M. Korde, B. Kandasubramanian, Industrial & Engineering Chemistry Research, 58 (2019) 9709-9757.
    [291] X. Zhu, C. Liu, J. Duan, X. Liang, X. Li, H. Sun, D. Kong, J. Yang, Int J Nanomedicine, 11 (2016) 6065-6077.
    [292] E.M. Elmowafy, M. Tiboni, M.E. Soliman, Journal of Pharmaceutical Investigation, 49 (2019) 347-380.
    [293] K. Vinothini, N.K. Rajendran, M.A. Munusamy, A.A. Alarfaj, M. Rajan, Mater Sci Eng C Mater Biol Appl, 100 (2019) 676-687.
    [294] H.N. Nguyen, T.M.N. Hoang, T.T.T. Mai, T.Q.T. Nguyen, H.D. Do, T.H. Pham, T.L. Nguyen, P.T. Ha, Advances in Natural Sciences: Nanoscience and Nanotechnology, 6 (2015).

    無法下載圖示 全文公開日期 2033/01/13 (校內網路)
    全文公開日期 2033/01/13 (校外網路)
    全文公開日期 2033/01/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE