簡易檢索 / 詳目顯示

研究生: 王嘉慶
Chia-Ching Wang
論文名稱: 以理論計算研究氧氣及一氧化碳於二氧化釕(110)表面之吸附及氧化還原反應
Adsorption and Redox Reactions of CO and O2 on RuO2(110) Surface: Quantum Mechanical Similation
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 蔡大翔
Dah-Shyang Tsai
何嘉仁
Jia-Jen Ho
林倫年
Michitoshi Hayashi
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 87
中文關鍵詞: 二氧化釕一氧化碳氧化催化反應觸媒
外文關鍵詞: ruthenium dioxide, catalyst
相關次數: 點閱:254下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用理論計算的方法,來探討一氧化碳以及氧氣在二氧化釕[110]晶面上的吸附情形,以及一氧化碳在表面上的氧化反應。在這次的研究中採用了兩種不同的分子模型,其中一個用來模擬兩個相鄰的Rucus吸附位置;另一個則用來模擬相鄰的Rucus以及Rubr吸附位置。以分子模型搭配密度泛涵理論(DFT)的理論計算,成功的模擬出與實驗相符合的吸附能及反應能。
    在一氧化碳以及氧氣的吸附中,不同的吸附環境會大大的影響到吸附能的大小。根據實驗的結果,一氧化碳以及氧氣的吸附能會受到反合作效應(anti-cooperative effect)的影響:當相鄰的吸附位置上有鍵結其他的原子或分子時,會降低本身的吸附能;其中又以氧原子吸附在相鄰位置上所造成的影響最大。除了在文獻中已被提出的Obr及Ocus,在本次模擬中更進一步的探討了二氧化釕表面上的單配位超氧化氧分子(1 superoxo oxygen)以及架橋式超氧化氧分子(bridge superoxo oxygen)。其中單配位超氧化氧分子的結構,為一氧分子以其中一個氧原子吸附於Rucus位置上,另一個氧原子則為懸空的狀態。相較於吸附於Ru位置上的氧原子,懸空氧原子有著較強的反應性。在本次研究中所提出的四種一氧化碳氧化生成二氧化碳反應中,一氧化碳分子與懸空氧原子的反應有著最低的反應能障,其0.55 eV的反應能障遠低於其他反應所需的1 eV。


    In this thesis, quantum mechanical calculation was employed to simulate the adsorption of CO and O2 on RuO2(110) surface. In addition, CO oxidation mechanisms on the surface also have been characterized by theoretical study. Two cluster models were applied in this work, one contains two adjacent Rucus site and another contains neighbored Rucus site and Rubr site. Reactions on RuO2(110) surface are successfully investigated by DFT calculation using the cluster models, the calculated binding energies and reaction energies are in good agreement with experiment.
    In the adsorption of CO and O2, the binding energies are strong affected by the bonding environment. There is a significant anti-cooperative effect: the binding energies will be reduced when the neighboring site is occupied by other species, especially when an oxygen atom on neighboring site. For O2 adsorption, the pathways of adsorption mechanism also been characterized. The adsorption energies of oxygen species are very high and RuO2(110) surface shows a good oxygen storage ability. Besides the oxygen species Ocus and Obr on RuO2(110) surface that have been investigated before, 1 superoxo and bridge superoxo oxygen species were characterized in this work. 1 superoxo oxygen species is an oxygen molecule adsorbed on Rucus site with one oxygen atom dangled, where the dangled oxygen atom demonstrates a high reaction activity. There are four CO oxidation mechanisms are proposed in this work. In CO oxidation reactions, adsorbed CO molecule reacts with dangled oxygen atom provides a reaction mechanism with lowest barrier of 0.55 eV, which is much lower than other mechanisms that are about 1 eV.

    Abstract………………………………………………………………………………..I 摘要…………………………………………………………………………………...II 誌謝. …………………………………………………………………………………III Contents..……………………………………………………………………………IV List of Tables………………………………………………………………………...VI List of Figures…………………………………………………………..…………VIII Chapter 1: Introduction…………………………………………………………….1 Chapter 2: Theoretical Background……………………………………………….15 2.1 Density Functional Theory……………………………………………………..15 2.2 Basis Set……………………………………………………………………......18 Chapter 3: Computational Detail………………………………………………….21 3.1 Method…………………………………………………………………………21 3.2 Cluster Model…………………………………………………………………..24 Chapter 4: Result……………………………………………………………………28 4.1 Oxygen Species on RuO2(110) Surface………………………………………..28 4.1.1 Adsorption of Oxygen Molecule…………………………………………28 4.1.2 Geometry and Energy of Oxygen Species……………………………….35 4.1.3 O2-cus Species on RuO2(110) Surface………………………………….....39 4.2 Adsorption of CO………………………………………………………………49 4.3 Vibration Frequency……………………………………………………………54 4.4 CO Oxidation…………………………………………………………………..58 Chapter 5: Discussion………………………………………………………………62 Chapter 6: Conclusion……………………………………………………………...81 Reference…………………………………………………………………………….82

    (1) Engel, T.; Ertl, G. Adc. Cutul. 1979, 28, 1.
    (2) Cant, N. W.; Hicks, P. C.; Lemon, B. S. J. Catal. 1978, 54, 372.
    (3) Lee, H.-I.; White, J. M. J. Catal. 1980, 63, 261.
    (4) Savchenko, V. I.; Boreskov, G. K.; Kalinkin, A. V.; Salanov, A. N. Kinet. Catal. 1984, 24, 983.
    (5) Peden, C. H. F.; Goodman, D. W. J. Phys. Chem. 1986, 90, 1360.
    (6) Stampfl, C.; Schwegmann, S.; Over, H.; Scheffler, M.; Ertl, G. Phys. Rev. Lett. 1996, 77, 3371.
    (7) Böttcher, A.; Niehus, H.; Schwegmann, S.; Over, H.; Ertl, G. J. Phys. Chem. 1997, 101, 11185.
    (8) Böttcher, A.; Rogazia, M.; Niehus, H.; Over, H.; Ertl, G. J. Phys. Chem. 1999, 103, 6267.
    (9) Kim, Y.D.; Seitsonen, A. P.; Over, H. Surf. Sci. 2000, 465, 1.
    (10) Over, H.; Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Lundgren, E.; Schmid, M.; Varga, P.; Morgante, A.; Ertl, G. Science 2000, 287, 1474.
    (11) Fan, C. Y.; Wang, J.; Jacobi, K.; Ertl, G. J. Chem. Phys. 2001, 114, 10058.
    (12) Kim, Y. D.; Seitsonen, A.P.; Over, H. Phys. Rev. B 2001, 63, 115419.
    (13) Kim, Y. D.; Over, H.; Krabbes, G.; Ertl, G. Top Catal. 2001, 14, 95.
    (14) Madhavaram, H.; Idriss, H.; Wendt, S.; Kim, Y. D.; Knapp, M.; Over, H.; Abmann, J.; Loffler, E.; Muhler, M. J. Catal. 2001, 202, 296.
    (15) Over, H.; Seitsonen, A. P.; Lundgren, E.; Schmid, M.; Varga, P. J. Am. Chem. Soc. 2001, 123, 11807.
    (16) Over, H.; Seitsonen, A. P.; Lundgren, E.; Schmid, M.; Varga, P. Surf. Sci. 2002, 515, 143.
    (17) Seitsonen, A. P.; Kim, Y. D.; Knapp, M.; Wendt, S.; Over, H. Phys. Rev. B 2001, 65, 035 413.
    (18) Wang, J.; Fan, C. Y.; Jacobi, K.; Ertl, G. Surf. Sci. 2001, 481, 113.
    (19) Laffosse, A.; Wang, Y.; Jacobi, K. J. Chem. Phys. 2002, 117, 2823.
    (20) Wang, W. B.; Zei, M. S.; Ertl, G. Chem. Phys. Lett. 2002, 355, 301.
    (21) Wang, J.; Fan, C. Y.; Jacobi, K.; Ertl, G. J. Phys. Chem. B 2002, 106, 3422.
    (22) Wendt, S.; Seitsonen, A. P.; Kim, Y. D.; Knapp, M.; Idriss, H.; Over, H. Surf. Sci. 2002, 505, 137.
    (23) Gong, X.-Q.; Liu, Z.-P.; Raval, R.; Hu, P. J. Am. Chem. Soc. 2004, 126, 8.
    (24) Kim, S. H.; Paulus, U. A.; Wang, Y.; Wintterlin, J.; Jacobi, K.; Ertl, G. J. Chem. Phys. 2003, 119, 9729.
    (25) Over, H.; Muhler, M. Prog. Surf. Sci. 2003, 72, 3.
    (26) Paulus, U.A.; Wang, Y.; Jacobi, K.; Ertl, G. Surf. Sci. 2003, 547, 349.
    (27) Reuter, K.; Scheffler, M. Phys. Rev. B 2003, 68, 045 407.
    (28) Wendt, S.; Seitonen, A. P.; Over, H. Catal. Today 2003, 85, 167.
    (29) Assmann, J.; Narkhede, V.; Khodeir, L.; Loffler, E.; Hinrichsen, O.; Birkner, A.; Over, H.; Muhler, M. J. Phys. Chem. B 2004, 108, 14634.
    (30) Kim, S. H.; Wintterlin, J. J. Phys. Chem. B 2004, 108, 14565.
    (31) Knapp, M.; Seitsonen, A. P.; Kim, Y. D.; Over, H. J. Phys. Chem. B 2004, 108, 14392.
    (32) Paulus, U. A.; Wang, Y.; Kim, S. H.; Geng, P.; Wintterlin, J.; Jacobi, K.; Ertl, G. J. Chem. Phys. 2004, 121, 11302.
    (33) Reuter, K.; Frenkel, D.; Scheffler, M. Phys. Rev. Lett. 2004, 93, 116105.
    (34) Wendt, S.; Knapp, M.; Over, H. J. Am. Chem. Soc. 2004, 126, 1537.
    (35) Liu, Z.-P.; Hu, P.; Alavi, A. J. Chem. Phys. 2001, 114, 5956.
    (36) Reuter, L.; Scheffler, M. Phys. Rev. B 2006, 73, 045433.
    (37) Blyholder, G. J. Phys. Chem. 1964, 68, 2772.
    (38) Kim, Y. D.; Seitsonen, A. P.; Wendt, S.; Wang, J.; Fan, C.; Jacobi, K.; Over, H.; Ertl, G. J. Phys. Chem. B 2001, 105, 3752.
    (39) Handbook of Heterogeneous Catalysis; Ertl, G., Knözinger, H., Weitkamp, J., Eds.; Wiley: New York, 1997; vol. 5.
    (40) Wang, Y.; Jacobi, K.; Schöne, W.-D.; Ertl, G. J. Phys. Chem. B 2005, 109, 7883.
    (41) Wang, Y.; Jacobi, K.; Ertl, G. J. Phys. Chem. B 2003, 107, 13918.
    (42) Lobo, A.; Conrad, H. Surf. Sci. 2003, 523, 279.
    (43) Paulus, U. A.; Wang, Y.; Bonzel, H. P.; Jacobi, K.; Ertl, G. J. Phys. Chem. B 2005, 109, 2139.
    (44) Liu, H.; Iglesia E. J. Phys. Chem. B 2005, 109, 2155
    (45) Satterfield, C. N. Heterogeneous catalysis in Industrial Practice; McGraw-Hill Inc.: New York, 1991; p 312.
    (46) Wagner, E.; Fetzer, T. In Handbook of heterogeneous catalysis; Ertl, G., Knözinger, H., Weitkamp, J., Eds.; Wiley-VCH: New York, 1997; Vol. 4, p 1748.
    (47) Mattheiss, L. F. phys. Rev. B 1976, 13, 2433.
    (48) Ryden, W. D.; Lawson, A. W.; Sartain, C. C. Phys. Rev. B 1970, 1, 1494.
    (49) Ryden, W. D.; Lawson, A. W. Phys. Rev. B 1984, 1, 1813.
    (50) Jia, Q. X.; Shi, Z. Q.; Jiao, K. L.; Anderson, W. A.; Collins, F. M. Thin Solid Films 1991, 196, 29.
    (51) Halder, N. C. Electrocomp. Sci. Technol. 1983, 11, 21.
    (52) Bobran, K.; Kusy, A. J. Phys.: Condens. Matter 1991, 3, 7015.
    (53) Kolowa, E.; So, F. C. T.; Pan, E. T.-S.; Nicolet, M.-A. Appl. Phys. Lett. 1987, 50, 854.
    (54) Al-Shareef, H. N.; Bellur, K. R.; Kingon, A. I.; Auciello, O. Appl. Phys. Lett.,1995, 66, 239.
    (55) Takemura, K.; Sakuma, T.; Miyasada, Y. Appl. Phys. Lett. 1994, 64, 2967.
    (56) Zheng, J. P.; Jow, T. R. J. Electrochem. Soc. 1995, 142, L6.
    (57) Kotz, R.; Carlen, M. Electrochim. Acta 2000, 45, 2483.
    (58) Kuhn, A. T.; Mortimer, C. J. J. Electrochem. Soc. 1973, 120, 231.
    (59) Trasatti, S.; Buzzance, G. J. Electroanal. Chem. Interfacial Electrochem. 1971, 29, 635.
    (60) Ashcroft, A. T.; Cheetham, A. K.; Foord, J. S.; Green, M. L. H.; Grey, C. P.; Murrell, A. J.; Vernon, P. D. F. Nature 1990, 344, 319.
    (61) Narducci, D.; Ornaghi, A.; Mari, C. M. Sens. Actuators B 1994, 19, 566.
    (62) Salomonsson, A.; Roy, S.; Aulin, C.; Cerdá J.; Käll, P.-O.; Ojamäe, L.; Strand, M.; Sanati, M.; Spetz, A. L. Sens. Actuators B 2005, 107, 831.
    (63) Carrette, L.; Fiedrich, K. A.; Stimming, U. Fuel Cells 2001, 1, 5.
    (64) Iwasita, T. In Advances in Electrochemical Science and Engineering; Gerischer H.; Tobias, C., Eds.; Verlag Chemie, 1990; Vol. 1, pp. 127-170.
    (65) Hamnett, A. In Interfacial Electrochemistry. Theory, Experimental and Applications; Wieckowski, A., Ed.; Marcel Dekker: New York, 1999, Chapter 47.
    (66) Iwasita, T. Electrochim. Acta 2002, 47, 3663-3664.
    (67) Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1993, 97, 12020.
    (68) Krausa, M.; Vielstich, W. J. Electroanal. Chem. 1994, 379, 307.
    (69) Arico, A. S.; Poltarzewski, Z.; Kim, H.; Morana, A.; Giordano, N.; Antonucci, V. J. Power Sources 1995, 55, 159.
    (70) Wang, K.; Gasteiger, H. A.; Markovic, N.; Ross, P. N. Electrochim. Acta 1996, 41, 2587.
    (71) Gotz, M.; Wendt, H. Electrochim. Acta 1998, 43, 3637.
    (72) Oliveira-Neto, A.; Perez, J.; Napporn, W. T.; Ticianelli, E. A.; Gonzalez, E. R. J. Brazil. Chem. Soc. 2000, 11, 39.
    (73) Watanabe, M.; Motoo, S. J. Electro. Chem. 1975, 60, 267.
    (74) Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, E. J. Electro. Acta 1994, 39 1825.
    (75) Long, J. W.; Stroud, R. M.; Swider-Lyons, K. E.; Rolison, D. R. J. Phys. Chem. B 2000, 104, 9772.
    (76) Villullas, H. M.; Mattos-Costa, F. I.; Bulhoes, L. O. S. J. Phys. Chem. B 2004, 108, 12898.
    (77) Chen, Z.; Qiu, X.; Lu, B.; Zhang, S.; Zhu, W.; Chen, L. Electrochem. Comm. 2005, 7, 593.
    (78) Levine, Ira N. Quantum chemistry 5th ed.; Prentice-Hall Inc.: New Jersey, 1991; Ch. 15.
    (79) Gaussian 03, Revision B.04, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA, 2003.
    (80) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (81) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1997, 78, 1396.
    (82) Rappé, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard III, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024.
    (83) Welton, J.; McCarthy, G.; North Dakota State University, Fargo, North Dakota, USA. ICDD Grant-in-Aid 1989.
    (84) Pushkarev, V. V.; Kovalchuk, V. I.; d’Itri, J. L. J. Phys. Chem. B 2004, 108, 5341.
    (85) 謝育淇 Thesis of Master, National Taiwan University of Science and Technology, Department of Chemical Engineering, 2005.

    QR CODE