簡易檢索 / 詳目顯示

研究生: 蕭延哲
Yen-Che Hsiao
論文名稱: 具解耦控制之三主動全橋式轉換器
Triple-Active-Bridge Converter with Decoupling Control
指導教授: 邱煌仁
Huang-Jen Chiu
口試委員: 邱煌仁
Huang-Jen Chiu
林景源
Jing-Yuan Lin
張佑丞
Yu-Chen Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 111
中文關鍵詞: 三主動全橋式轉換器單相移控制法平均功率傳遞廣義狀態空間平均法解耦矩陣
外文關鍵詞: Triple-active-bridge converter, Single-phase-shift modulation, Average power transfer, Generalized average modeling, Decoupling matrix
相關次數: 點閱:189下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主旨為研究三主動全橋式轉換器,以能量回收系統為目的,選用此電路取代兩組雙主動全橋式轉換器電路,減少能量傳遞過程中經過的元件及功耗,來達到更高效率的提升。本文使用單相移控制法之寬範圍輸出電壓應用,加入解耦控制以期望系統兩輸出端達到不相互影響之成效,並進行模擬驗證其可靠性。文中首先針對三主動全橋式轉換器之電路架構、控制法及動作區間分析進行說明,再針對電路之設計流程、小信號建模與解耦矩陣進行推導,最後利用模擬與實測驗證轉換器之功能。開迴路小信號建模使用廣義狀態空間平均法(General Average Modeling, GAM),此方法與傳統的狀態空間平均法相比更適合應用於此架構。傳統狀態空間平均法僅考慮到直流項,適用於交流成分小的系統。三主動全橋式轉換器之電感電流為純交流訊號,因此不適用於傳統狀態空間平均法。需改使用廣義狀態空間平均法對電路進行建模,推導電路之開迴路小信號,並對解耦矩陣作推導分析,將矩陣加入至系統中進行控制,完成兩輸出不相互影響之閉迴路系統。最後,以寬範圍輸出電壓之規格對電路進行設計,以最大輸出功率60 kW進行解耦控制之閉迴路模擬驗證,並以28 kW作為實作之最大輸出功率,量測穩態波形及效率。


The main purpose of this thesis is to study the application of triple active bridge converter in energy recovery system, which is to replace two sets of dual-active-bridge (DAB) converters is the best way to improve efficiency. The advantage is to reduce the number of components and power consumption in the process of energy transfer. This article proposes a single input and dual wide range output. Two output loads can be controlled independently using single phase shift (SPS) control. To achieve the system of two output ports do not affect each other by decoupling control, also conducts simulations to verify its reliability. The seven main concepts will be mentioned: Explain the topology, control method, analysis sequence, design method, small-signal modeling, and decoupling matrix of triple-active-bridge, also verify the converter function by simulation and actual measurement. The open-loop small-signal modeling uses the General Average Modeling (GAM), which is more suitable for this topology than the traditional State Space Averaging (SSA) method. State Space Averaging method is suitable for systems with DC term and small AC term. However, the inductor current of the triple-active-bridge converter is a pure AC signal. Therefore, it is not suitable for the State Space Averaging method. It is necessary to model and derive the open-loop small signal, and analyze the decoupling matrix of the circuit by General Average Modeling. Adding a matrix system for control to complete the closed-loop system with two outputs that do not affect each other. Considering the relevant specification of energy recovery system. A triple active bridge converter with a wide range of output voltage, and the maximum output power of 60 kW is used for closed-loop simulation verification of decoupling control. The maximum output power of 28 kW is used as the actual maximum output power to measure the steady state waveform and efficiency.

摘要 i Abstract ii 誌謝 iv 目錄 v 圖索引 vii 表索引 xii 第一章 緒論 1 1.1研究動機與目的 1 1.2論文大綱 3 第二章 三主動全橋式轉換器 5 2.1電路架構介紹 5 2.2單相移控制法介紹 6 2.3平均功率傳遞 7 2.4動作區間分析 10 第三章 小信號建模與解耦矩陣分析 20 3.1廣義狀態空間平均法介紹 20 3.2單相移控制之小信號模型推導 22 3.3解耦矩陣推導 33 第四章 系統研製 40 4.1電路規格 40 4.2電路元件設計 40 4.2.1儲能電感設計 43 4.2.2隔離變壓器設計 45 4.3小信號之計算結果與模擬驗證 47 4.3.1開迴路小信號驗證 47 4.3.2閉迴路補償器設計 53 4.4電路元件理想與實務之差異 59 4.5數位控制規劃與設計 62 4.5.1韌體流程規劃 63 4.5.2 PWM脈波寬度調變邏輯控制 66 第五章 模擬與實驗結果 70 5.1閉迴路解耦控制電路模擬 70 5.2穩態波形量測 80 5.3效率量測 87 第六章 結論與未來展望 90 6.1結論 90 6.2未來展望 91 參考文獻 92

[1] C. Zhao, S. D. Round and J. W. Kolar, “An Isolated Three-Port Bidirectional DC-DC Converter With Decoupled Power Flow Management,” in IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2443-2453, Sept. 2008.
[2] M. Neubert, A. Gorodnichev, J. Gottschlich, and R. W. De Doncker, “Performance Analysis of a Triple-Active Bridge Converter for Interconnection of Future DC-Grids,” IEEE Energy Conversion Congress and Exposition, 2016.
[3] X. Yu, Z. Lan, J. Zeng, C. Tu and D. He, “Time-Domain-Based Superposition Analysis for Triple Active Bridge and Its Application for ZVS and Current Stress Optimization,” in IEEE Transactions on Power Electronics, May 2023.
[4] A. K. Bhattacharjee, N. Kutkut, and I. Batarseh, “Review of multiport converters for solar and energy storage integration,” IEEE Trans. Power Electron., vol. 34, no. 2, pp. 1431–1445, Feb. 2019.
[5] T. OHNO and N. HOSHI, “A New Control Method for Triple-Active Bridge Converter with Feed Forward Control,” 2018 International Power Electronics Conference (IPEC-Niigata 2018 -ECCE Asia), Niigata, Japan, 2018.
[6] K. Katagiri, S. Nakagawa, Y. Kado and K. Wada, “Analysis on load-factor dependence of triple active bridge converter's transmission efficiency for autonomous power networks,” TENCON 2017 - 2017 IEEE Region 10 Conference, Penang, Malaysia, 2017.
[7] Y. Kado and K. Katagiri, “Autonomous Distributed Power Network Consisting of Triple Active Bridge Converters,” 2018 Energy and Sustainability for Small Developing Economies (ES2DE), Funchal, Portugal, 2018.
[8] J. Li, Q. Luo, T. Luo, D. Mou and M. Liserre, “Efficiency Optimization Scheme for Isolated Triple Active Bridge DC–DC Converter With Full Soft-Switching and Minimized RMS Current,” in IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9114-9128, Aug. 2022.
[9] R. Yapa and A. Forsyth, “Extended soft switching operation of the triple active bridge convereter,” 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, 2012.
[10] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli and D. Diaz, “Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle With Charging Current Containing Low Frequency Ripple,” in IEEE Transactions on Power Electronics, vol. 30, no. 12, Dec. 2015.
[11] J. Everts, F. Krismer, J. Van den Keybus, J. Driesen and J. W. Kolar, “Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC–DC Converters,” in IEEE Transactions on Power Electronics, vol. 29, no. 8, Aug. 2014.
[12] F. Krismer and J. W. Kolar, “Accurate Power Loss Model Derivation of a High-Current Dual Active Bridge Converter for an Automotive Application,” in IEEE Transactions on Industrial Electronics, vol. 57, no. 3, March 2010.
[13] Gonzalez Ortega, Alberto, “Dual active bridge DC-DC converter in photovoltaic applications,” Science in Electrical and Computer Engineering in the Undergraduate College of the University of Illinois at Urbana-Champaign, 2018.
[14] 陳怡瑄,三重相移控制之寬範圍雙主動全橋式電路研製,國立臺灣科技大學電子工程系碩士論文,2021年
[15] 江哲瑋,三重相移控制之雙主動全橋式轉換器閉迴路設計,國立臺灣科技大學電子工程系碩士論文,2022年
[16] Y. Kado, S. Okutani, K. Katagiri and P. –Y. Huang, “Autonomous DC Microgrid Consisting of Triple Active Bridge Converters,” 2019 IEEE Third International Conference on DC Microgrid (ICDCM), 2019, pp.1-5.
[17] V. –L. Pham and K. Wada. “Design of Series Inductances in Triple Active Bridge Converter Using Normalization Procedure for Integrated EV and PV System,” 2019 10th Intrenational Conference on Power Electronics and ECCE Asia (ICPE 2019 – ECCE Asia), 2019, pp. 3027-3032.
[18] R. W. A. A. De Doncker, D. M. Divan and M. H. Kheraluwala, “A three-phase soft-switched high-power-density DC/DC converter for high-power applications,” in IEEE Transactions on Industry Applications, vol. 27, no. 1, pp. 63-73, Jan.-Feb. 1991.
[19] 王嘉丞,應用於車輛之雙主動全橋式轉換器研製,國立臺灣科技大學電子工程系碩士論文,2020年
[20] S. R. Sanders, J. M. Noworolski, X. Z. Liu and G. C. Verghese, “Generalized averaging method for power conversion circuits,” in IEEE Transactions on Power Electronics, vol. 6, no. 2, pp. 251-259, April 1991.
[21] Qin, Hengsi, and Jonathan W. Kimball. “Generalized average modeling of dual active bridge DC–DC converter.” IEEE Transactions on power electronics 27.4 (2011): 2078-2084.
[22] S. Okutani, P. -Y. Huang and Y. Kado, “Generalized Average Model of Triple Active Bridge Converter,” 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, MD, USA, 2019.
[23] Y. Kado, R. Kasashima, N. Iwama, and K. Wada, “Implementation and Performance of Three-way Isolated DC/DC Converter using SiC-MOSFETs for Power Flow Control,” Proc. IEEE Int. Power Electronics for Distributed Generation Systems Conf., 2016.
[24] K. Nishimoto, Y. Kado, R. Kasashima, S. Nakagawa, and K. Wada, “Decoupling power flow control system in triple active bridge converter rated at 400 V, 10 kW, and 20 kHz,” 2017 IEEE 8th International Symposium on Power Electronics for Distributed Generation Systems (PEDG).
[25] S. Nakagawa, J. Arai, R. Kasashima, K. Nishimoto, Y. Kado, and K. Wada, “Dynamic performance of triple-active bridge converter rated at 400 V, 10 kW, and 20 kHz,” 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017 - ECCE Asia).
[26] H. Yong, X. Li, X. Wu, M. Li and Y. Wang, “Stability Control Design for TAB-Based Three-Port Bidirectional DC/DC Converters in PV-Battery Grid-Connected Applications,” IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020.
[27] H. Cao, G. Zhu, F. Diao and Y. Zhao, “Novel Power Decoupling Methods for Three-Port Triple-Active-Bridge Converters,” 2022 IEEE Applied Power Electronics Conference and Exposition (APEC), Houston, TX, USA, 2022.
[28] K. Katagiri, K. Nishimoto, S. Nakagawa, S. Okutani, Y. Kado, and K. Wada, “Decoupling Power Flow Control of Triple-Active Bridge Converter with Voltage Difference between Each Port for Distributed Power Supply System,” 2018 20th European Conference on Power Electronics and Applications (EPE'18 ECCE Europe) .
[29] 蕭伯承,應用於不斷電系統之三主動全橋式轉換器之研製,國立臺灣科技大學電子工程系碩士論文,2021年
[30] 彭玟瑞,三主動全橋式轉換器之最小有效值電流優化設計,國立臺灣科技大學電子工程系碩士論文,2022年
[31] Colonel Wm. T. McLyman, Transformer and Inductor Design Handbook, Fourth Edition. Fourth edition. CRC Press, 2017.

QR CODE